# 1 (b) seg = emu.query("florian", "*", "phonetic=i:") seg.dft = emu.track(seg, "dft") # 1(c) fnum = ncol(seg.dft) fmax = max(trackfreq(seg.dft)) N = 2 * (fnum-1) fs = 2 * fmax fres = fs/N d = 1000 * N/fs # 1(d) seg.dft5 = dcut(seg.dft, .5, prop=T) plot(seg.dft5[3,0:3000]) # 1(e) seg.f0 = emu.track(seg, "F0") dcut(seg.f0[3,], .5, prop=T) # 181.2176 Hz # Daher die Periodendauer in ms 1000/181.2176 # 5.518228 ms. d ist 32 ms. Daher sind die Harmonischen sichtbar # 1(f) 913.8428/5 # 1(g) # Zwei Periodendauer sind 5.518228 * 2 # 11.03646 # daher wenn d = 10 ms, mŸssten die Harmonischen verschwinden. # FŸr d = 10, N = 10 * fs/1000 = 160 # 160. Das ist aber nicht von Potenz 2. Wir wŠhlen die # nŠchst niedrigste also N = 128 seg.dft = emu.track(seg, "dft") seg.dft5 = dcut(seg.dft, .5, prop=T) plot(seg.dft5[3,0:3000]) # 1(h) locator(1)$x # [1] 2371.305 seg.fm = emu.track(seg, "fm") dcut(seg.fm[3,2], .5, prop=T) [1] 2396 # 2(a) # ncol(dorfric.dft) # 2(b) d5 = dcut(dorfric.dft, .5, prop=T) # 2(c) # i d5[,500:4000] # ii d5[,c(500:1000, 3000:4000)] # iii temp = dorfric.l == "C" d5[temp,0:3000] # 2(d) temp = dorfric.l %in% c("x", "C") plot(d5[temp,1800:6000], dorfric.l[temp], fun=mean, dbnorm=T) # 3(a) 20000 Hz fs = 2 * max(trackfreq(keng.dft.5)) # 3(b) 25.6 ms N = 2 * (ncol(keng.dft.5) - 1) 1000 * N /fs # 3(c) plot(keng.dft.5[,500:3800], keng.l, fun=mean, dbnorm=T) # 4(a) a = fapply(keng.dft.5[,700:9000], sum, power=T) b = fapply(keng.dft.5[,2700:9000], sum, power=T) boxplot(a-b ~ keng.l) # 5.1 s5 = dcut(sib.dft, .5, prop=T) plot(s5, sib.l) plot(s5, sib.l, fun=mean, dbnorm=T) # 5.2 # berechnen zwischen 2-8 kHz m = fapply(s5, moments, minval=T) boxplot(m[,1] ~ sib.l) # 6.2 plot(stops10[,0:4000], stops10.lab) plot(stops10[,0:4000], stops10.lab, fun=mean, dbnorm=T) mstop = fapply(stops10[,0:4000], moments, minval=T) eplot(mstop[,1:2], stops10.lab, centroid=T) # 6.5 spec = function(specdaten) { lm(specdaten ~ trackfreq(specdaten))$coef } erg = fapply(stops10[,1000:4000], spec) boxplot(erg[,2] ~ stops10.lab)