

How are the coarticulatory source and effect connected in the development of vowel metaphony?

Stem vowel metaphony and suffix vowel erosion in the Lausberg area (Southern Italy)

Pia Greca

Masterseminar *ExperimentalPhonetik* 29. November 2024

Some preliminary knowledge

V-to-V coarticulation

(Harrington et al. 2013: 244)

From coarticulation to sound change

A German example of a phonologised V-to-V, Umlaut:
 Althochdeutsch: <der gast, dia gesti>
 Modern German <Gäste> /gεstə/
 Most probably, Protogermanisch: */gasti/!

```
Target /a/ + Trigger /i/ = a new phoneme /ε/!
What happened in Modern German?
```

- Target: the output (effect) of the sound change became phonemically contrastive, i.e. not an allophone/subphoneme but fully phonologised
- Trigger (or source): phonetic erosion via neutralisation to [ə]

The phonologisation paradox

The coarticulatory effect is enhanced as the source wanes e.g. Umlaut: */gasti/ → /gɛstə/

How is this possible?

Possible explanation: **Cue-trading** between source (trigger) and effect (output from the target)

Further examples:

Vowel nasalization: main, /mɛ̃/ < Latin <manus>, 'hand' Tonogenesis: Eastern vs Western Khmu:

buic / puic \rightarrow puic / pûic 'rice vine / take off clothes'

Our case study

- affects mid stem vowels /e, o/
- triggered by high inflectional suffix vowels /i, u/

e.g. b[ε]lla, b[i]llu vs Italian /bella, bello/

Why the Lausberg area?

- Coarticulation and sound change in *living* dialects
- Different sound change types coexist in one area

	Mormanno	
[b ɛ lla]	[bellu]	
[k ɔ tta]	[k o ttu]	

	Mormanno	West	
[b ɛ lla]	[bellu]	[b je llu, b ie llu]	
[k ɔ tta]	[k o ttu]	[kwottu, kuottu]	

	Mormanno	West	East
[b ɛ lla]	[bellu]	[bjellu, biellu]	[billu]
[k ɔ tta]	[k o ttu]	[k <mark>wo</mark> ttu, k <mark>uo</mark> ttu]	[k <mark>u</mark> ttu]

• Suffix vowel erosion: regional variation is unclear.

[kotta, kuttu], [kotta, kutta] or [kott, kutt]?

Research questions

1. **Is there a trade-off** of cues between stem and suffix vowels?

2. **Nature of this trade-off**: Is this cue-trading observable *between* different regions, and/or also *within* any speaker or region?

Hypotheses

1. Increasing metaphonic influence in the stem:

MM < West < East

2. Increasing suffix erosion, parallel to metaphony:

MM < West < East

3. Trade-off also within regions/individuals

Data elicitation

Word elicitation through a picture-naming task

 Inflected forms of nouns, adjectives and verbs

• 35 speakers: 18 ♀, 17 ♂, 13 to 91 years old, mean age 48.9

Hypotheses

1. Increasing metaphonic influence in the stem:

2. Increasing suffix erosion, parallel to metaphony:

3. Trade-off also within regions/individuals

Lexical items: examples

	Stem vowels		
Suffixes	/ <mark>e</mark> / (n = 2752)	/ <mark>o</mark> / (n = 2620)	
-a	bɛlla	bona	
-е	verme	nipote	
-i	d[e-ie-i]nti	f[o-uo-u]rni	
-u	l[e-ie-i]ttu	k[o-uo-u]ttu	

118 word types (55 lexical stems)

Stem vowel formant processing

- Time normalisation of F1 and F2
- Lobanov-normalised formant pairs: F1 and F2,
 /a/, /i/ and /u/ as "corner" vowels
- Joint analysis of F1 and F2 along time, using FPCA (Gubian et al. 2015)
- /e/ and /o/ stems analysed <u>separately</u>

Functional Principal Components Analysis (FPCA)

Source: Gubian et al. 2015

Functional Principal Components Analysis

FPCA: shape variations

Functional Principal
Components Analysis

Vowel raising / lowering

/e/
$$\rightarrow$$
[i] /e/ \rightarrow [ɛ] /o/ \rightarrow [c]

Diphthongisation

$$/e/ \rightarrow [ii]$$
 $/e/ \rightarrow [iii]$ $/o/ \rightarrow [uc] \leftarrow /o/$

Vowel height scores (s_1) , by Suffix and Region

Diphthongisation scores (s_3) , by Suffix and Region

Reconstructed formants from FPCA

Hypotheses

1. Increasing metaphonic influence in the stem:

MM < West < East

2. Increasing suffix erosion, parallel to metaphony:

3. Trade-off also within regions

Suffix vowel deletion

Centralisation (c) index

based on Euclidean distances in the Lobanov-normalised F1 × F2 space

$$c = \log (d / m)$$

d c < 0: less vowelreduction

Centralisation (c) index

based on Euclidean distances in the Lobanov-normalised F1 × F2 space

$$c = \log (d / m)$$

- d c < 0: less vowelreduction
- d c ≈ 0: suffix vowel likely reduced to [ə]

Results: suffix centralisation

Hypotheses

1. Increasing metaphonic influence in the stem:

MM < West < East

2. Increasing suffix erosion, parallel to metaphony:

MM < West < East

3. Trade-off also within regions/individuals

Within-individual cue-trading between suffix and stem?

Within any region, do speakers who centralise the suffix more also produce more marked metaphony?

Calculated by speaker, lexical stem, for ≠ suffix contexts:

 d_{stem} : log. of Euclidean distances in the acoustic space e.g. d_{stem} of /boni/ to /bona, bone/ (High vs Mid vs Low)

 d_{suffix} : log. of Euclidean distances in the F1 x F2 space e.g. d_{suffix} of /bon<u>u</u>/ to /bona, bone/ (High vs Mid vs Low)

Is d_{stem} inversely related to d_{suffix} ?

Correlation between d_{stem} and d_{suffix}

d < 0: less acoustic informativity

 $d \approx 0$: more acoustic informativity

Relationship between the two was non-significant

To summarise...

MM < West < East

metaphonic influence —— suffix erosion

- Trading of phonetic and morphological cues between stem and suffix.
- Trade-off takes place between, not within regions
- Each region possibly represents a stage in the progression of metaphony towards phonologisation

Danke ©

Fragen? Kommentare?