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Sound change and word frequency

/t/-gloGalisaHon in Manchester English: no effect of 
word frequency (Bermúdez-Ortero et al, 20151)

/t/-flapping in New Zealand English: sound 
change takes place first in more frequent words 
(Hay  & Foulkes, 20162)

push-chain /a-ɛ/ in NZE:  /ɛ/ moves from /a/ occurs in words 
of low frequency first (Hay et al, 20153)

How to model three different kinds of results.

1. Bermúdez-Otero et al (2015). Paper presented at 2nd Edinburgh symposium on historical phonology. 2. 
Hay & Foulkes (2016, Language, 92, 298-330. 3. Hay et al (2015) Cogni9on, 139, 83–91. 



Similarities in both Todd et al (2019) and Stevens et al (2019, Glossa):

There are words (types),  phonemes (categories), and signals 
(exemplars).
A word is a generalisaHon over the signals/exemplars that belong 
to it. A phoneme is the union of these signals (e.g. /a/ is a 
generalisaHon of the signals over map, cat, ...).

Speaker and listener. A phoneme shi^ is caused by the listener's 
absorpHon (or not) of the signal into memory i.e. sound change is 
perceptually driven via a producHon-percepHon loop. 

Contra a modular feedforward architecture and the Neogrammarian 
principle: phonemes of words can shi^ at different rates.
In contrast to Ohala, in which one allophone is replaced 
by another (in all words), sound change is incremental.

The number of signals( exemplars) per word and phoneme remain 
the same during the ongoing sound change



Differences between Todd et al (2019) and Stevens et al (2019)

Only single phoneme (drift) or two-phoneme interaction.

A single agent or community talking to itself (no mulHple 
agent interacHon).

AcousHcs: a single value (a one-dimensional space). 
No modelling of speech dynamics.

The data is arHficially generated (not based on data from 
real speakers).

The sound change is extrinsically induced by adding a bias in the 
direcHon of sound change - rather than emerging intrinsically
from phoneHc variaHon as in Stevens et al, 2019.

Monosyllables and no minimal pairs (no bet/bat)

Phoneme classes are fixed (no split/merge)

In Todd et al (2019) but not Stevens et al (2019):



Differences between Todd et al (2019) and Stevens et al (2019)

In Todd et al (2019) but not Stevens et al (2019):

there is explicit modelling of word frequency

decisions about whether or not to absorb new items are based 
on exemplar strength (Gaussian probability in Stevens et al, 
2019).

there is category (phoneme) overlap but no mechanism 
for actual merger. Todd et al (2019) explicitly argue 
against the mechanism in Stevens et al (2019) in which  
A is progressively absorbed into B in an A->B merger (A, 
B are two phonemes). Todd et al (2019): B must not 
'leech' A.



Differences between Todd et al (2019) and Stevens et al (2019)

In the starHng condiHons and in the ongoing sound change  in Todd et al 
(2019), the distribuHon of phonemes remains more or less symmetrical 
i.e. no skew.  In Stevens et al (2019), and indeed in many other models of 
sound change (Beddor, 20091;  GarreG & Johnson, 20132, Ohala 19933), 
skew is one of the factors that drives sound change.

'As vowel distributions moved in the 
New Zealand short front vowel shift, 
they maintained their distance from 
one another, their shapes (width and 
skewness), and their degree of 
overlap with one another. At all 
times, they exhibited little skewness 
and sub- stantial overlap relative to 
their width'



Starting conditions in Todd et al (2019): words

Each word is associated with a lexical (log.) frequency.

More frequent words have more exemplars than low 
frequency words. 'We follow the mulHple-trace 
hypothesis (Hintzman & Block, 1971) in assuming 
that the number of exemplars for a given type (word) 
represents that type’s frequency'.

There were fewer high frequency than low frequency 
words in the simulaHon in order to ensure that the 
total number of exemplars in high and low frequency 
words (and in e.g. in /a, e/ phonemes was the same). 



StarHng condiHons in Todd et al (2019): acousHcs

Each exemplar consists of a single 
value generated at random from a 
raised cosine distribuHon 



InteracHon: ProducHon

A word, W is retrieved in relaHon to its lexical frequency (high 
frequency words are more likely to be selected). 

A bias is added to any E whose phoneme is in the direction of 
the sound (in an A->B shift, a bias is added to any exemplar 
that is a member of /A/, not /B/). 

One of the W's exemplars, E,  is chosen at random. 

W and E are sent to the listener... 

Noise is added to E regardless of its phonemic associaHon. 



InteracHon: PercepHon

E is then absorbed depending on discriminability and typicality

E acHvates all of the listener's stored exemplars. The degree of 
acHvaHon depends on a (Gaussian weighted) distance to E. 



PercepHon and Discriminability

Todd pers. com: the evaluation is probabilistic. So it can be passed (with 
low probability) even in cases where the activation of the other category is 
greater than the activation of the intended category. Note: this is a point of 
difference from your model, where the exemplar passes the equivalent test 
only if the probability of the intended category is greater than the 
probability of the other category. In your model, the strict nature of this 
test means that categories cannot overlap. In our model, the probabilistic 
nature of the test means that overlap is permitted (provided there is some 
force encouraging the two categories to stay near one another).

"compare the raHo of category acHvaHons (intended category 
acHvaHon, Ai, divided by other category acHvaHon, Ao) to the 
discriminability threshold, δ (a parameter). When the raHo is equal 
to the threshold, the probability of passing the evaluaHon is 0.5"



PercepHon and Typicality

Todd pers. comm: "If you just have the choice between the two 
categories, then the probability would not fall as you move 
outward from the mode, in the direcHon away from the other 
category – i.e. you would say that anything that doesn’t seem like 
the other category would pass the typicality evaluaHon, even if it 
doesn’t much seem like the intended category either. We 
characterize using acHvaHon; the acHvaHon of the intended 
category must be sufficiently high. As for the discriminability 
evaluaHon, the typicality evaluaHon is probabilisHc "

The probability of passing the typicality evalua5on is determined by 
comparing the ac5va5on of the intended category, Ai (normalized for 
the number of exemplars of the category,), to the typicality threshold, τ 
(a parameter). When the ac5va5on is equal to the threshold, the 
probability of passing the evalua5on is 0.5



PercepHon and absorpHon  into memory

if E is absorbed into memory (having passed the 
discriminability and typicality tests), it replaces one of the  
exemplars from the same word selected at random



Modelling single phoneme dri^: one phoneme, no compeHtor phonemes

to model cases such as /t/-Glottalisation in Manchester English in which 
high and low frequency words change at the same rate

Suppose two words WH, WL (high and low frequency) such 
that  the frequency of WH is 4 Hmes that of WL

Then  WH has 4 Hmes as many exemplars as WL. 
Suppose 5 exemplars (4 in WH , 1 in WL).

Then in 40 selecHons, each exemplar is likely to advance by 40/5 = 
8 units.  i.e. each of the exemplars of WH will advance by 8 units, 
and the single exemplar in WL will also advance by 8 units.

Generalising: the bias in the direcHon of sound change is 
distributed across a larger number of exemplars in WH which is 
offset by WH being selected more o^en. These effects cancel 
each other out, so WH and WL change at the same rate. 



Modelling A in the sound change A->B

e.g. A = /t/-flapping in  NZE which encroaches on the space for B = /d/.

Hay & Foulkes (2016). A->B is faster in high frequency words.

Psycholinguistic evidence used in computational model:  e.g. high 
frequency words are more robustly identified in noise (Howe, 1957) 
are in lexical decision are more likely to be classified as real words 
(Luce & Pisoni, 1998), and faster (Forster & Chambers, 1973).

In the computaHonal model, Todd et al (2019) make high 
frequency words more discriminable. Therefore, in the region of 
overlap, where A encroaches on B, high frequency words are more 
likely to be retained than low frequency words (hence high 
frequency words change faster).



Two phonemes: B in A->BModelling B  in the sound change where B moves away from A

bat -> bet and 'bet' moves away from 'bat'. It is 
this movement away of 'bet' words from 'bat' that 
is being modelled. 

Presumably a bias is applied to 'bet' words to move 
them away from 'bat' words. 

high frequency 'bet' words in the region of overlap with 'bat' 
are more likely to pass the discriminability threshold. Hence 
the change (involving 'bet' moving away from 'bat') is more 
likely in low frequency words. 



Modelling B  in the sound change where B moves away from A

JMH: HF-words change faster than LF-words in /a/ for the same 
reason as for /t/-flapping

Todd: "In the model, yes, but this isn’t actually a model of /ae/ in NZE (in 
which LF words change fastest). The simplifying assumptions of the model 
only allow us to develop a treatment of /E/, as discussed in Appendix A.1."

"In essence, it’s the reverse of the situaDon for /t/-tapping. /E/ is moving away 
from another category, i.e. away from a region of acousDc ambiguity (of course, 
this sense of movement “away” is only local, because /ae/ is also moving). The 
discriminability asymmetry means that HF words are more robust to acousDc 
ambiguity than LF words, so they can remain in the ambiguous region longer 
than LF words. That is, LF words are repelled by the ambiguous region more, so 
they retreat from it faster.

The fact that LF words are also subject to the typicality force less than HF words 
(due to the interacDon between producDon and storage described in Appendix 
B) helps them to extend further in the direcDon away from /ae/. So it helps the 
effect, but it doesn’t drive the effect"


