An Environment for
Acoustic Phonetic Research

APS
User Guide

Jonathan M. Harrington
Gordon S. Watson

The Centre for Speech Technology Research
University of Edinburgh

APS An Environment for Acoustic Phonetic
Research

Jonathan M. Harrington? Gordon S. Watson

July 11, 1990

!Now at the School of English and Linguistics, Macquarie University, Sydney,
N.S.W. 2109, Australia.

The APS code contains three compiled FORTRAN-77 functions taken
from a public domain library. The following is its copyright notice.

Copyright 1990 by AT&T Bell Laboratories and Bellcore.

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this per-
mission notice and warranty disclaimer appear in supporting
documentation, and that the names of AT&T Bell Laboratories
or Bellcore or any of their entities not be used in advertising
or publicity pertaining to distribution of the software without
specific, written prior permission.

AT&T and Bellcore disclaim all warranties with regard to this
software, including all implied warranties of merchantability and
fitness. In no event shall AT&T or Bellcore be liable for any
special, indirect or consequential damages or any damages what-
soever resulting from loss of use, data or profits, whether in an
action of contract, negligence or other tortious action, arising
out, of or in connection with the use or performance of this soft-
ware.

Preface

APS is a tool that enables acoustic phonetic experiments on speech databases.
Suppose someone wanted to compute the average value of the first formant
in the middle third of all /a/ phonemes that occur in the database, or sup-
pose we require a histogram plot of the fundamental frequency of all back
vowels in the database which follow oral stops and precede voiceless frica-
tives for two speakers. These are the kind of operations APS is designed to
do.

The database that APS analyses must be structured in terms of label
files and track files. The label files contain phonemic transcriptions of each
utterance with a start time and an end time for each phonetic symbol. The
track files contain analysis data which have been created by applying signal
- processing algorithms over digitised speech. APS enables statistical opera-
tions to be applied to any of the track files with respect to the boundaries
of the phonetic symbols in the label files.

At, CSTR, the S language and APS run on four Sun 4 machines: Watt,
Brodie, Scott and Phoenix. The database at CSTR has track files with
values at 5ms intervals. There are various acoustic parameters such as fI
(first formant), syncspt (fundamental frequency) and E0-300 (energy in the
0 - 300 Hz band).

The tutorial chapters were written by Jonathan Harrington. I have
updated them to reflect the changes to APS since since these were written
in April 1989. The other chapters provide information for those wishing to
install APS, how to make APS run on a new database, and documentation
for all APS functions.

Gordon S. Watson
CSTR, July 1990

Contents

What is APS?

1.1 Overview i i i e e e
1.2 Speech Database
13 SegmentLists
1.4 Segment Language00 oo,
1.4.1 Creating Segment Lists
1.4.2 Measuring the Acoustic Characteristics of Segments
1.43 Segment Shifting
1.5 Data Management
1.6 Statistics e
17T Graphics. i i it i e e
Tutorial Introduction to the S Language
21 Start Up. e e e e
2.2 Creating Objects; Vectors
2.3 Creating Objects: Matrices
2.4 Arithmetic Operators
2.5 Comparison Operators v vt vt vt
26 Functions
2.7 Using an Editor Inside S: Writing Functions
2.8 Exercisesot i e e e e e
29 Answers e e e e

Tutorial Introduction to APS

3.1 Utterances v v v v i i e e e e e
32 SegmentLists
33 Labels e e e
34 Frames v v v i e e e e e e e e e e e e e
3.5 Plotting Facilities.
3.6 Exercises e e e e e e e e e e

CONTENTS

37 AnSwers e e 41
Using APS 45
4.1 ExampleI: Removingvalues. 46
42 ExampleIl: HerztoMel 47
4.3 Example III: Plotting -F1 Against -(F2-F1) 47
4.4 Example IV: Calculating the Slopeof F2. 49
4.5 Example V: Vowel Normalisation 50
4.6 Exercises 53
47 ADSWEIS e e e 54
Installing APS 57
Speech Databases for APS 61
6.1 How The Speech Database IsRead 61
6.2 How Filenames Are Constructed 63

6.2.1 Standard Filename Construction 63

6.2.2 Olivetti Filename Construction 65
6.3 Indexing a New Database 66
6.4 Adding New Database Formats 67

6.4.1 Internal Table of Database Formats 67

6.4.2 Altering the Table of Database Formats 69

6.4.3 Adding a New Method of Filename Construction . . 70

6.4.4 Adding New Internal Formats 71

APS Functions : 73

Chapter 1

What is APS?

Research into acoustic phonetics attempts to explain how the characteristic
cues of specific phonemes can be recovered from the acoustic signal.

The relationship between phonetic segments and their acoustic values
is complicated by a number of factors that cause variability. Variability
can exist due to phonetic context (compare the acoustics of the /k/ in cool
with the /k/ in keel). The position of the segment in a syllable or sentence
also effects its acoustic characteristics. Variability exists between speakers
and even for a single speaker when repeating the same syllable [1].

The complexity of the task is compounded by the fact that the acoustic
characteristics of phonetic segments are defined by a time-series of multi-
dimensional vectors.

1.1 Overview

In the face of these complexities a software environment called APS was
designed with the following features

1. The ability to select tokens of speech which can be grouped in various
ways according to the factors that cause variability.

2. A means of measuring the acoustic characteristics of each token.

3. Appropriate analysis apparatus.

APS (Acoustic Phonetics in) consists of a set of extensions to the S
system, a programming environment for data analysis and graphics [2]. All
APS functions are written either in the S language and or in C and then

5

6 CHAPTER 1. WHATIS APS?

D dsts APS; S

(:) user interfacs
SEGMENT LISTS

STATISTICS
Mean, standard

Indexes deviation,
portions of covariance,
speach discrininant

analysis

DATA
MANAGEMENT
Data storage,

selection and
filtering

SPEECH DATABASE

Label f1les and
track files

SEGMENT
LANGUAGE

Segment
creation and
manipulation,
Samp1ling
functions

GRAPHICS

Histograms,
scatter pilots,
boxplots

Figure 1.1: APS Functional Ovérview

integrated into the S system. Fig 1.1 gives a functional view of the system.
Component parts are discussed in the sections below.

| 1.2 Speech Database

The speech database currently used by the APS package consists of a series
of utterances, typically whole sentences of continuous speech of between 1.5
and 10 seconds in duration. Each utterance is stored in a pair of files called
the label file and track file.

The label file contains a phonemic transcription made either by trained
phoneticians using a segmentation station or by an automatic segmentation
and labeling program. Each phonemic segment is assigned a label, a start
time and an end time.

The track file contains output from a variety of digital signal processing
operations, each of which is called a track. Examples of tracks used at
CSTR are: energy in various frequency bands, formant frequency, the first
moment of the power spectrum. Each track is stored as one value for each
frame of data, where a frame is (at CSTR) 5 milliseconds in duration.

APS provides a means of investigating how the phonemes, stored as
segments in the label files, relate 1o the acoustics, stored as iracks in the
track files.

1.3. SEGMENT LISTS 7

Utterance 1 Utterance 2

Tracks

Labe\ file

Utteranceid. | 1 1 | 1 |1 }2(2
Start time (msec) | 40 |102{225|297] 49 (180
End time (msec) | 85 |140{235{344| 78 |194

Figure 1.2: Segment Lists

1.3 Segment Lists

APS employs the notion of a segment, an index into a single, contiguous
portion of speech within the bounds of a single utterance in the speech
database. When many such segments are stored together it is called a
segment list (Fig 1.2). A segment list might, for example, refer to all the
oral stops in the database, or it could refer to all the instants at which the
rate-of-change of high-frequency energy is particularly great.

;, Hendrix and Boves [3], in an implementation based on a relational
‘1 database, make explicit the difference between acoustic segments and phone- : |
mic segments. In APS the interpretation of the segment list is left to the |
discretion of the user. This type-less representation allows the operations
described in the next section to be applied to any segment list.

1.4 Segment Language

1.4.1 Creating Segment Lists

Segment lists may be created either a) on the basis of the hand-labelled
data in the label files or b) from the acoustics stored in the track files.

The operation phon reads all the label files in the database and returns
the segments in the form of a segment list. An optional argument to phon
restricts the segment list to those whose label in the label file belongs to a
given set of phonemes. It is also possible to select phonemes according to
left and right context up to an arbitrary distance away.

8 CHAPTER 1. WHAT IS APS?

Operation | Description

meanv Mean value

medianv | Median value

minv Minimum value

minp Point in time at which min. occurs
maxv Maximum value

maxp Point in time at which max. occurs

Table 1.1: Some Sampling Operations

Segments may be generated on the basis of track files by means of the
two operations above and below. The user specifies a track and a single
constant number, the threshold. For a given threshold and track a test is
performed between the threshold and the values in each frame of all the
utterances. The operation above returns segments that span consecutive
frames whose values are all greater than or equal to the threshold. below
does the same operation for those frames whose values are less than the

threshold.

Segment lists obtained from tracks may be matched against segment
lists obtained from label files, In this way acoustic events can be identified
from the corresponding hand transcription.

1.4.2 Measuring the Acoustic Characteristics of Seg-
ments

The most complete description of the contour of a track across each segment
is obtained by plotting the values at each frame against a time axis. See
for example Fig 1.3.

The acoustic data is usually reduced before further analysis by a process
called sampling. Sampling is the means by which all the frames for a
particular track and segment are reduced to a single numerical value.

Given a number of speech segments in the form of a segment list and a
track upon which to operate, a sampling operator returns as many values as
there are segments in the segment list. For example, meanv computes the
mean value of a track across each segment in a segment list. Other sampling
operations are shown in Table 1.1. All sampling operations return as many
values as there are segments in the segment list.

1.4. SEGMENT LANGUAGE

F2 (Hz)
1000 4200 1400 1600 41B00 2000 2200

F2 acraoss /ei/ showing context

1

800
1

T T T T T T T T
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Normalised time

Figure 1.3: F2 Contours

10 CHAPTER 1. WHAT IS APS?

1.4.3 Segment Shifting

It is often desirable to adjust the start time and/or the end times of seg-
ments. For example, in an attempt to reduce the effect of context it may
be beneficial to exclude the first and last portions of a segment and per-
form the remaining analysis on the middle portion. The operation midslice
reduces segments to a proportion of the original duration, removing equal
portions from the beginning and end. More general adjustments to start
times and end times may be made using arithmetic expressions.

1.5 Data Management

Much acoustic phonetic data is categorical - the speech domain commonly
assigns objects into classes. S provides 1) functions for indexing and ranking
data, 2) a mechanism for filtering out data elements according to arithmetic
or logical criteria or by set membership and 3) functions that give tabular
summaries, ‘

1.6 Statistics

Investigations with a large speech database require access to statistical func-
tions. Due to the inherent variability of speech, a sufficiently large number
of speech tokens must be considered in order to obtain a representative
sample. Statistical functions are required for summarising and modelling
the data. Some statistical functions in S are: median, standard deviation,
covariance, discriminant analysis, and PDF modelling.

1.7 Graphics

Data characteristics are more easily seen with the use of modern graphics
[4]: graphical displays take advantage of the ability of the human visual
system to process a large quantity of data, perceiving patterns and excep-
tions to patterns. Graphical capabilities in S include histograms, scatter
plots (Fig 1.4), 3D perspective plots and boxplots (Fig 1.5).

1.7. GRAPHICS

-F1 (mels)

-700 -600 -500 -400

-800

T
-1600

11

Acoustic Vowel Targets

T T T T T
-1400 -1200 -i000 -800 -600

~-(F2 - Fi) (mels)

Figure 1.4: Scatter Plot

12

Puration (msec)

200

150

i00

50

Hand-Labelled Stops Duration

CHAPTER 1. WHAT IS APS?

*

Figure 1.5: Boxplot Plot

*
T * T
» A
| | {
* 3 { : |
] ! |
T T T l
| | - |
N | [l
| ; i
!
I { | ! T
} I | ! ! l
1 f * !
!
b d o] K p t
Phonemes

Bibliography

(1] G.E. Peterson and H.L. Barney Control Methods Used in a Study of the
Vowels, JASA Vol. 24, No. 2, pp175-184. 1952.

(2] R.A. Becker, J.M. Chambers and A.R. Wilks, The New S Language.
Pacific Grove, California: Wadsworth and Brooks/Cole, 1988.

(3] J.P.M. Hendrix and L. Boves Definition of Relations in an Acoustic
Phonetic Database Proc ICASSP 1988, pp. 643-646.

(4] J.M. Chambers, W.S. Cleveland, B. Kleiner and P.A. Tukey, Graphical
Methods for Data Analysis. Belmont, California: Wadsworth, 1983.

13

14

BIBLIOGRAPHY

Chapter 2

Tutorial Introduction to
the S Language

This chapter and the following two chapters are a compilation of notes
which have been used for the 1988/89 M.Sc Speech Computing course in
the Department of Linguistics. It was originally intended for postgraduate
students who may have had absolutely no previous experience of using
computers and the style so much of the material will seem very elementary
to anyone who is familiar with programming of any kind (especially in ‘C’).

This chapter gives a general introduction to the S language indepen-
dently of APS. '

2.1 Start Up

In order to be able to write expressions which perform operations such
as those suggested in the introduction, we shall begin by giving a brief
introduction to the S language. This introduction should be supplemented
by reading The New S Language by Becker R., Chambers J. & Wilks A.
(1988, Wadsworth & Brooks: Pacific Grove, Ca.). Chapters 1 to 3 are
sufficient to use S effectively.

It is preferable if the user can login and work at the computer while
working through the examples in this document. At CSTR login to either
Watt, Brodie, Scott or Phoenix and in answer to the UNIX prompt %, type

% Splus

The reply from S will look something like this

15

16 CHAPTER 2. INTRODUCTION TO S

Initializing login directory for new S-PLUS user.
S-PLUS : Copyright 1988, 1989 Statistical Sciences
S : Copyright AT&T.

Version 2.2 Release 1 for Sun4 : 1989

Working data will be in /ub/sip/gsw/.Data

>

The first line means that S has created a directory called .Data. All S data
will be stored in there and remains even until the next S session. After
printing version numbers of the program S prints > which is the S prompt.
You are now able to start using S. (Henceforth, commands to be entered
at the terminal will be indented as above and any comments which follow
the commands will be appended with #).

2.2 Creating Objects: Vectors

(It is assumed that the user has now run ‘Splus’).
A vector can be defined as a single list of data entries. The following is
an example of a vector

123 45 2 127

Vectors can also be other than numbers in which case each data entry is
surrounded by double quotes " . The following is also a vector.

“Phonetics" "37" "entry" "msc"

Storing the vector of numbers in an object called x1 can be achieved in S
by entering

> xi « c(123, 45, 2, 127)

Note that the « (assignment arrow) is obtained by typing - (underscore).
In order to inspect the contents of x1, simply enter x1.

> xi
[1] 123 45 2 127
>

Don’t worry about the [1] for now. The character vector can be entered
in a similar manner

> x2 « c("Phonetics", "37", "entry", "misc")
> x2 ‘

[1] "Phonetics" "37" "entry" "msc"

>

2.3. CREATING OBJECTS: MATRICES 17

A list of your S objects can be obtained by entering

> 1s()
[1] it nyon

The command to delete object x2 is
> rm(x2)

For the next example, create a vector of numbers from 1000 to 1200 as
follows

> values «— ¢(1000:1200)

A display of the entire vector can of course be obtained by entering values.
But if we only wanted to display the 89th entry, we would have to enter

> values[89]

Alternatively, entries from 89 up to 100 are obtained by entering
> values[89:100]

In order to store these entries in a new object called valuesl, enter
> valuesi «— values[89:100]

which creates another vector called valuesi with these data entries.

Two or more vectors can also be combined into a single vector. First
create two objects which contain entries 27 through to 30 and 35 through
to 40 of the object values.

> valuesi « values[27:30]
> values2 « values([35:40]

To combine these two vectors into a single vector, enter

> valuesnew «— c(valuesl, values2)

2.3 Creating Objects: Matrices

A matrix consists of two or more columns of data entries (a vector can be
thought of as a single columned matrix). Begin by creating five vectors
which have an equal number of entries, e.g.

18 CHAPTER 2. INTRODUCTION TO S

> vecl «— ¢(110, 28, 39, 48)
> vec2 «— ¢(123, 560, 2, 11)
> vec3 «— c(110, 34, 50, 98)
> vecd — c¢(B9, 102, 421, 61)
> vech «~ ¢(121, 322, 87, 23)

These vectors can be combined into a matrix using either rbind or cbind.
rbind concatenates the vectors as rows and cbind as columns. Compare
the results of the following

> newdata — rbind(veci, vec2, vec3, vec4, vech)
> newdatal «— cbind(vecli, vec2, vec3, vecd, vech)

Any entry in a matrix is given by objectname[r, c¢] where r is the row
number and c¢ is the column. You will see from newdata that 50 is stored
in row 3 column 3; this can be obtained by entering

> newdatal3,3]
[1] 50

Now try the following

> objectname(r,] # to read row ‘r’
> objectnamel,c] # to read column ‘¢’

So we could store column 2 of newdata in the object wi by entering
> wl ~ newdatal,2]

(w1 will now be a vector). It is also possible to give ranges, as in
objectnamel[r(a):r(b),]

to read from row r(a) to r(b)
objectnamel[,c(a):c(b)]

to read from column ¢(a) to ¢(b). So, rows 2 through to 4 of newdata are
given by

> newdatal[2:4,]
[,11 [,21 L,3]

[1,] 28 3¢ 49
[2,] 560 2 11
f3,] 3¢ 50 98
[4,] 102 421 61
[5,] 322 87 23
>

2.4. ARITHMETIC OPERATORS 19

and columns 2 through to 5 by
> newdatal,2:5]

To read from rows 1 through to 3 and columns 1 through to 4, we would
have to enter

> newdatal1:3, 1:4]

2.4 Arithmetic Operators

The arithmetic operators are as follows

+ # addition

- # subtraction

multiplication

division

raise to the power of

PN

Try these out. For example, to compute the arithmetic expression ((13 —
45)(17 + 3))3, enter

> ((13 - 45) * (17 + 3))"3

We can apply any of these operators to vectors. For example, to subtract
7 from each entry in vec1 (and store the results in newvec), enter

> newvec «— vecl - 7

> vecl

[1] 110 28 39 49

> newvec # all equal vecl - 7
[1] 103 21 32 42

>

To multiply the third column of newdata by 2.6
> newdatal[,3] * 2.8

It is also possible to perform arithmetic operations on two vectors or ma-
trices. For example, to subtract vec2 from veci

> vec2 - vecl

[1] 13 532 -37 -38
> vec2

[1] 123 560 2 11

> vecl

[1] 110 28 39 49

>

20 CHAPTER 2. INTRODUCTION TO S

To add vecs to the third column of newdata

> newdatal,3] + vech

2.5 Comparison Operators

The following is a list of the comparison operators

> # greater than

>= # greater than or equal to
< # less than

<= # less than or equal to

= # equal to

not equal to

These comparison operators return a logical vector consisting of either TRUE
(T) or FALSE (F).
For example,

> vecl < 40

returns F T T F because only the second and third entries of this vector
are less than 40 (the statement vecl < 40 is only TRUE for entries 2 and
3).

Again, we can compare vectors with other vectors (preferably of the
same length). For example, to find out whether the entries in vec3 are
equivalent to those in the third column of newdata, enter

> vec3 == newdatal,3]

which returns T T T T because the entries in vec3 are identical to the those
in third column of newdata.

The importance of these operators lies in the fact that they provide a
convenient way of extracting data. Suppose we wanted to extract all the
entries from the object values which were less than 1080. First, create an
appropriate logical vector and write this to an object (in this case which)

> which «- values < 1080
Those entries which are less than 1080 are obtained by entering
> values[which]

which lists all the entries where which is TRUE. If we just wanted to know
how many entries are less than 1080

2.5. COMPARISON OPERATORS 21

> sum(which)

and if we wanted to know whether there were any entries less than 1080,
enter

> any(which)

which returns TRUE if there are any entries less than 1080, otherwise FALSE.
We can also obtain the inverse, i.e. a list of all the entries which are not
less than 1080 by entering

> values[!which]

which lists all the entries where which is FALSE,

We can combine one or more logical vectors in a single expression, For
example, suppose we want to extract those entries from values which are
both less than 1080 and greater than 1020 (i.e. the range 1020 j values
1080). This can be done using & (and operator)

> which « values < 1020 & values > 1080
> values [which]

Suppose we would like the entries for which values is either less than 1100
or greater than 1150 (this is equivalent to a listing of both values < 1100
and values > 1160). This could be done using the | (or) operator

> which «~ values < 1100 | values > 1150
> values [which]

Logical vectors are also useful in extracting data from matrices. For the
next example, create another vector, friends, with the names John, Michael,
Mary, Cathy and Colin

> friends «— c("John", "Michael", "Mary", "Cathy",
"Colin")

Now suppose that the data in the third column of newdata represents the
number of times a year these four people go to work by car (i.e. the first
entry in newdatal,3] corresponds to how many times John goes to work
by car, the second corresponds to Michael etc.) and that we would like to
find out which of them drives to work more than 55 times a year. This is
given by)

> which «— newdatal,3] > 55
> friends[which]

22 CHAPTER 2. INTRODUCTION TO S

This returns "Cathy” and "“Colin". The first line creates a logical vector;
the second lists the members of friends which are T (i.e. for which the
entries in newdatal,3] are greater than 55). For another example, suppose
that the second column in newdata denotes the number of times the people
in friends go to work by train. We would now like to find out which of
them go to work more often by car than by train. This would be given by

> which « newdatal,3] > newdatal,2]
> friends[which]

which should return "John", "Mary" and "Cathy".

2.6 Functions

A number of functions are available in S for performing, amongst other
things, arithmetic and statistical operations. Only a few will be listed here

mean(x) # calculate the mean of x
min(x) # calculate the minimum of x
max(x) # calculate the maximum of x
len(x) # calculate the length of x
sqrt(x) # calculate the square root of x
var (x) # calculate the variance of x

#

log(x) calculate the natural log of x
exp(x) # calculate the exponential of x
log10(x) # calculate the log to the base 10 of x

- Normally, these functions would be applied to data stored in objects. For
example, we could calculate the mean of vec2 and store the results in the
object y1 by typing

> y1 « mean(vec2)

2.7 Using an Editor Inside S: Writing Func-
tions

This section assumes that you are able to use an editor. If you use an editor
other than the default Emacs, then specify your own editor by assigning to
the object .Editor. If you use vi, for example, say

> Editor « "vi"

2.7. USING AN EDITOR INSIDE S: WRITING FUNCTIONS 23

As we saw above, one way of storing a list of numbers in a vector would be
to type

> newvecl — c(123, 34, 46.8, -19, 37..... etc)

Another way, which is more convenient when the list is long, is to use an
editor inside S. If we want to store the list of numbers in newvect, begin

by typing
> newvecl — ed(as.numeric())

Having typed this, you will automatically enter the editor. A character
vector can be created by typing as.character in place of as.numeric.
Numbers (or characters) should be separated by spaces or new lines. Write
out the file in the usual manner. Verify that the numbers have been stored
in newvec1 by entering newveci. The object newveci could now be edited
using ed, as follows

> newvecl «— ed(newveci)

You can also use ed to create your own functions. For example, to cre-
ate a function which computed the difference between the maximum and
minimum values of a data set, begin by entering

> myfun — ed(FUNCTION)

Never forget to assign the result of ed to an object; if you simply say
> ed(FUNCTION) # Wrong!

or
> ed(myfun) # Wrong!

you will lose your edits.
When you are in the editor you should see this on your screen

function()

{
}

This is a skeleton function. The material inside the “()” defines how many
arguments the function is to have. In this case, we want the function to
apply to a single object and thus one argument will suffice. We can type
any name inside the “()” e.g. “x”, “y”, “data” or whatever. The purpose
of the function is to work out the difference between the maximum and
minimum for a particular object. As we saw above, this is given by

24 CHAPTER 2. INTRODUCTION TO S

Italy | France | Spain | U.S.A. | Germany
Heathrow 235 389 269 1035 412
Gatwick 289 412 893 984 349
Edinburgh 88 179 7 0 18
Glasgow 192 315 216 0 368
Manchester | 130 163 271 58 290

Table 2.1: Flights Table

max(i) - min(x)

where x is the name of the object. Accordingly, use ed to edit FUNCTION as
follows ’

function(x)

max(x) - min(x)
}

The braces must always surround the expression(s) and follow function().
When the function has been written, exit from ed in the normal way. The
function will now be stored under myfun. This can be verified by entering

> myfun

following which the material you typed in using ed should appear on the
screen. If you want to edit the function, enter

> myfun «— ed(myfun)
To apply this function to a data set such as values, simply enter
> myfun(values)

Note that in writing myfun we have prodnced. our own version of an S
function called range. Do myfun and range return the same values?

2.8 Exercises

1. Vectors and Matrices

(a) The following is a table of number of flights to different destina-
tions from four different airports over a period of time.
Create five vectors corresponding to the number of flights from
each airport (i.e. vector 1, which might be named Heathrow
should be a vector containing 235, 389, 269, 1035, 412).

2.8. EXERCISES 25

(b) Use the vectors created in the previous question to form an ap-
propriate matrix for Table 2.1 stored under the object name
flights

(c) Write an S expression for the following

i. a list of the flights to France (from all destinations)
ii. a list of the flights from Edinburgh (to all destinations)
iii. a list of the flights from Glasgow to France and Spain
iv. a list of the flights from Heathrow and Gatwick to Spain,
the U.S.A. and Germany
(d) Create objects for the following

i. a single vector of flights to France, Spain and Germany

ii. a two columned matrix with the flights to the USA in the
first column and the flights to France in the second

iii. a matrix of three rows and two columns containing the flights
from Heathrow, Gatwick and Manchester to Italy and Ger-
many. Hint: create three temporary matrices each with
the flights from Heathrow, Gatwick and Manchester (use
cbind). Then collect these objects into a complete matrix
using rbind.

2. Arithmetic Operators

(a) Convert the following into S expressions
i. (31+17)(25 - 3)
i, 5((76.3 - 13)2 +11/3)

(b) Write an S expression for

i. the difference between the number of flights from Heathrow
to Spain and the number of flights from Manchester to Ger-
' many
ii. The number of flights to the USA divided by 5

3. Comparison Operators
| : (a) Create two vectors called airports and destinations contain-
ing the names of the airports and destinations in Table 2.1.

(b) Write an S expression for

\ i. the destinations to which the number of flights from Edin-
| burgh is greater than 100

26 CHAPTER 2. INTRODUCTION TO S

ii. the airports which have less than 60 flights to the USA

iii. the airports which have both less than 200 flights to Italy
and more than 300 flights to France

iv. the airports which have between 100 and 300 flights to Ger-
many

v. the airports which have more flights to France than Spain

vi. the airports whose combined flights to Italy and France are
less than those to the USA

4. Functions

(a) Write an S expression for
1. the difference between the maximum number of flights to
Italy and the maximum number of flights to Spain

ii. the sum of the average number of flights to the USA and
the average number of flights to Germany

iii. the average of the flights from Glasgow and Manchester com-
bined. Hint: use ¢() to combine the flights from Glasgow
and those from Manchester into a single vector, and then
work out the average value of this vector

iv. the airport which has the maximum number of flights to
Italy (this problem also uses some of the techniques in the
next chapter)

(b) write a function which returns TRUE for entries which are greater
than the mean value of the entries. So for example, we would
like the function to return

FFFFTTT
to the vector
246810 12 14
(the average is 8 and the last three entries are greater than 8).

(c) Use your function to find out the destinations which have a
greater than average number of flights from Gatwick

2.9 Answers

1. Vectors and Matrices

2.9. ANSWERS 27

(a) Heathrow — c(235, 389, 269, 1035, 412)
Gatwick «— c(289, 412, 893, 984, 349) etc

or, use ed as follows
Heathrow «— ed(as.numeric()) etc.
(b) flights « rbind (Heathrow, Gatwick, Edinburgh,
Glasgow, Manchester)
(¢) 1i. flights[,2]
ii. flights[3,]
iii. flights[4, 2:3]
iv. flights[1:2, 3:5]
(d) i. objl — c(flights[,2:3], flights[,6])

or,
obj1l « c(flights[,2], flights[,3], flights[,5])

ii. obj2 « cbind (flights[,4], flights[,2])
iii. First create three temporary objects

x1 « cbind(flights[1,1], flights[1,5])
x2 « cbind(flights[2,1],f1lights[2,5])
x3 cbind(flights[s,ﬂ, flights[E,S])

Then bind them into one matrix
rbind(x1, x2, x3)

2. Arithmetic Operations

(a) i. (31 + 17) * (26 - 3)
i. 5 * ((76.3 - 13)°2 + (11/3))
(b) i. flights[1,3] - flights[5,5]
ii. flights[,41/6

3. Comparison operators

(a) airports « c("Heathrow", "Gatwick",
"Edinburgh', "Glasgow', "Manchester")
destinations «— c("Italy", "France",
"Spain", "USA", "Germany")
(b) i which « flights[3,] > 100
destinations[which]
ii. which « flights[,4] < 60
airports[which]

28 CHAPTER 2. INTRODUCTION TO S

iii. which — flights[,1] < 200 &
flights [,2] > 300
airports[which]
iv. which «— flights[,6] > 100 &
flights [,6] < 300
destinations[which]
v. which — flighta[,2] > flights[,3]
airports[which]
vi. which « (flights[,1] + flights([,2]) <
flights[,4]
airports[which]

4, Functions

(a) i max(flights(,1]) - max(flights[,3])

i. mean(flights[,4]) + mean(flights[,5])

ili. objl « c(flights[4,], flights[6,])
mean(obji) .

iv. which « flights[,1] == max(flights[,1])
airports[which]
(NB no spaces between the equals signs)

(b) function (x)

e

x > mean (x)
}

(c) If you called the function myfun, then the following should give
you the right answer

which — myfun(flights[2,])
destinations[which]

Chapter 3

Tutorial Introduction to
APS

This chapter provides an introduction to some of the more important func-
tions inside APS enabling segment lists and basic calculations such as means
and standard deviations to be made.

APS (Acoustic Phonetics in S) is a set of S functions and datasets de-
signed for reading label file and track files. See the function documentation
or the on-line help pages for:descriptions of these functions. To gain access
the APS, while running S issue the command aps

> aps()
APS : Copyright 1990 CSTR, University of Edinburgh
>

If you know you will always want to use APS functions when running S,
then APS may be made perminently available like so

.First — function()

>
{
aps()
}
>

(When you enter S it looks for a function called .First and if it is found
.First is called as if it were typed by the user).
Take a look at the names of the APS functions and datasets.

> 1s(pos=2)

29

30 CHAPTER 3. INTRODUCTION TO APS

This will simply list names. To see documentation for an APS object use
the help function.

> help(Utterances)

3.1 Utterances

At CSTR there is database of analysed speech upon which APS operates
on by default. At other sites, if the person who installed APS has not
provided such a default the user will have to follow the instructions given
in Chapter 6 “Speech Databases for APS”.

The default utterances at CSTR. consist of 200 sentences spoken by one
speaker. Enter

> Utterances

Each element of this character vector is an utterance in the database. APS
functions that read the database use this object to find the label files and
track files. If you have your own label files and track files you may use
these as your database instead; this is done by creating your own version
of Utterances (for details see Chapter 6 “Speech Databases for APS” and
documentation for the function mkdb) in Chapter 7.

It is also possible to operate on only part of the default database. For
example, the command

> Utterances « Utterances.db[1:50]

will create a local copy of the first 50 Utterances in the standard database
and causes operations to be performed on this subset only. (Utterances.db
is a copy of the public version of Utterances).

To list the tracks which are available, enter

> tracks()

The meaning of some of the more important tracks is given in Table 3.1.

3.2 Segment Lists

APS describes slices of speech from the speech database by means of seg-
ment lists. A segment list is a matrix of three columns containing the start
times and end times of each segment and the names of the utterances from
which they come. In the following segment list

3.2. SEGMENT LISTS 31

Track name | Conients

eX.Y energy from X to Y Hz

f1 first formant

2 second formant

3 third formant

al amplitude of first formant

a2 -| amplitude of second formant
a3 amplitude of third formant
bwl bandwidth of first formant
bw2 bandwidth of second formant
bw3 bandwidth of third formant
rms total energy

rl first autocorrelation coefficient
zcr zero crossing density

syncspt fundamental frequency (F0) values in Hz

Table 3.1: Some of the more important tracks in the CSTR. default database

240" "290" "/DB/atr20/be.dr1/mgsw0/sc016/sc016"
"1090" "1160" "/DB/atr20/bedri/mgsw0/sc021/sc021"

there are two segments. The first occurs in utterance *sc016" and has a
start.time at 240ms (relative to the beginning of the utterance) and extends
for -50ms until end time 290ms. The second .segment occurs in utterance
"sc021" with a start time of 1090ms and an end time of 1150ms.

In order to extract a segment list for every occurrence of a particular
segment, use the function phon. For example,

> 8.b — phon("b")
> 8.ii « phon("ii")

would extract all the /b/ and /ii/ segments which occur in Utterances
and store them in the objects (segment lists) s.b and s.ii respectively.
To extract all voiced stop segments, first create a vector with the relevant

labels
> VSTOP « c("b", "d", "g")

and then give VSTOP as an argument to phon
> s.voicedstop ~— phon(VSTOP)

Some vectors with segment labels have already been created. These are
STOP (oral stops), NAS (nasal consonants), GLI (/w/ and /y/), LIQ (/1/ and

32 CHAPTER 3. INTRODUCTION TO APS

/r/) and FRIC (all fricatives). You can see which segment labels are in these
vectors by entering e.g.

> STOP

Therefore, in order to make a segment list of all the oral stops in Utterances,
enter

" > 8.8top «— phon(STOP)

The length of any segment list is given by slen. For example, if we count
the number of stops in the default database

> slen(s.stop)

returns 573. A subsection of this segment list can be extracted from s.stop
as follows :

> newseg — s.stop[1:5,]

which extracts the first five entries in s.stop. (The comma is to ensure
that entire rows and therefore utterance name, start and end times are
obtained. If we had entered s.stop[1:5], only the start times would be
found).

The functions start and end extract the start and end times of seg-
ments. The start times of the five segments in newseg would be given
by

> start(newseg)

The difference between end and start times gives, of course, the segment
durations

> end(newseg) - start(newseg)

However, there is an equivalent function dur. Thus dur(newseg) is equiv-
alent to end(newseg) ~ start(newseg). If we wanted to get the average
duration of a segment list, this would be given by

> mean(dur(newseg))

We often need to create a second segment list which has different start and
end times from an original segment list. Suppose, for example, we wanted
to create a new segment list from s.stop whose start and stop times were
10ms greater and less respectively than those of s.stop. This can be done
as follows

3.3. LABELS 33

> newstart « start(s.stop) + 10
> newend «— end(s.stop) - 10
> newstop «— cbind(newstart, newend, utt(s.stop))

In the above, newstart is a vector consisting of start times which are 10ms
greater than those of s.stop while newend has stop times which are 10ms
less. The object newstop is created from the start times newstart, the
end times newend and the utterance names utt(s.stop); these are bound
together in a three columned matrix using cbind.

The start times and end times can also be changed in the original seg-
ment list like this

> start(newstop) «— start(newstop) + 10
> end(newstop) — end(newstop) - 10

As another example, supposing we wanted to create a segment list whose
start time are 15% greater and whose stop times are 10% less than those of
s.stop (i.e. if the original time goes from 0 to 100ms, the new time should
run from 15ms to 90ms). This can be done as follows

> newstop « s.stop
> stop(newstop) «— stop(newstop) + dur(s.stop)/15
> end(newstop) «— end(newstop) + dur(s.stop)/10

3.3 Labels

When label files are read by the function phon the labels are also stored in
the segment list. When you print a segment list you will see these printed
at the start of each line, one label per segment. To obtain a vector of these
labels create, for example, a segment list containing all the vowels

> s.vow «— phon(VOW)

We can obtain the label files that correspond to the segment lists in either
of these cases using the function label

> label(s.vow)
Using the function table see the totals for each phoneme
> table(label(s.vow))

Labels in conjunction with the function class are extremely useful in
acoustic-phonetic analysis because they enable us to extract segments lists
of a particular label from a larger segment list. For example, suppose we
wanted to extract all /ii/ segments from s.vow. This would be done as
follows

34 CHAPTER 3. INTRODUCTION TO APS

> 1l.vow «— label(s.vow)
> which « class(l.vow, "ii")

The function class takes two arguments, the first of which must be a vector
of labels and the second the set of labels we wish to extract. class returns
a logical vector (in this case stored in which) which is TRUE for all segments
in s.vow which are /ii/, otherwise FALSE. It is an easy matter to create a
new segment list corresponding to all /ii/ labels

> 8.ii « s.vow[which,]

You can verify that s.ii consists entirely of /ii/ segments by using the
function all which returns TRUE only if all the elements in its argument
are TRUE

> all(which)
Note that all segments other than /ii/ would be obtained by
> g.vow[!which,]

which returns all segments in s.vow for which the logical vector which is
FALSE.

There are at least two ways of extracting more than two segments from
a long segment list. The first uses — (or) to extract (in this case) all /au/
and /oi/ segments from s.vow

> which « class(l.vow, "au") | class(l.vow, "oi")
> s.vow[which,]

Alternatively, the comparison operator == could be used

> which « l.vow == "au” | l.vow == "oi"
> s.vow[which,]

The second method binds the labels into a vector first

> diphlab « c("au", "oi")
> which « class(l.vow, diphlab)
> s.vow[which,]

If we had simply wanted to add up how many /au/ and /oi/ segments there
were in s.vow, this could be done by using sum

> sum(which)

3.3. LABELS 35

It is also possible to extract the labels of left and right contexts. For
example, suppose we wanted to extract from s.vow all vowels which were
preceded by /m/. To do this, create a label file of all segments preceding
vowels

> 1l.vow « label(s.vow, -1)

The -1 causes access to the labels one position to the left. Now create a
logical vector for all /m/ labels in 11.vow

> rhs.m « class(ll.vow, "m")
The s.vow segments preceded by /m/ are given by
> newsegs «— s.vow[rhs.m,]
All vowels which are followed by e.g. fricatives can be obtained as follows

> lr.vow «— label(s.vow, +1)
> which «~ class(lr.vow, FRIC)
> newsegs «— s.vow[which,]

If we wanted all /@/ vowels which occur between nasal stops, the operator
& (and) must be used

labels of vowels:
1.vow «— label(s.vow)
labels of segments to the left of vowels:
1l.vow « label(s.vow,~1)
labels of segments to the right of vowels:
1r.vow «— label(s.vow, +1)
which « class(ll.vow, NAS) &
class(l.vow, "Q@") &
class(lr.vow, NAS)
> schwanas « s.vow[which,]

v

vVVVVVYV

Finally, the identification of labels from a segment list which has start and
end times which are different from those in the original utterances must
be obtained using the function luniq rather than label. In the example
below, a segment list is created whose start time is 10ms greater and whose
end time is 20ms less than the start and end times of s.vow. The labels of
this new segment list are then determined using luniq

> smallsegs «— cbind(start(s.vow) + 10, end(s.vow) - 20,
utt(s.vow))
> 1.smallsegs « luniq(smallsegs)

If you had used label(smallsegs) instead, no labels would appear (only
"» - try this).

36 CHAPTER 3. INTRODUCTION TO APS

3.4 Frames

For the purposes of illustration, extract a single vowel segment (the 75th
entry) from the segment list s.vow and store it in a segment list a.seg

a.seg «— s.vow[75,]

A segment can thought to be composed of frames of data which occur
at equal intervals between a segment’s start and end times. The inter-
val at which the frames occur depends on the sampling frequency; in
this database, the frames occur at intervals of 5ms (sampling frequency
of 20kHz). Accordingly, since a.seg has a start time at 1200ms and a
stop time at 1325ms (verify this by typing a.seg) it is 125ms long. Since
the frames occur at 5ms, we can expect this segment to be composed of
125/5 = 25 frames of data.

Each frame of data is associated with a value for each parameter track
which has been run over the database. There will therefore be 25 values for
e.g. "f1", 12", "£3", "r1", If we wanted to inspect the "£1" (1st formant
frequency values) for example, we can use the function frames which takes
two arguments

> frames(a.seg, "f1i")

25 "£1" values will now appear on the screen. The average F1 value can of
course be obtained as follows

> mean(frames(a.seg, "f1"))

but there is another function meanv which computes the same result. It
takes two arguments, a segment list and a track name

> meanv(a.seg, "f1")
The following functions operate in a similar way

> maxv (a.seg, "f1") # maximum value of a.seg on f1
> minv (a.seg, "f1") # minimum value of a.seg on fi

These are of course equivalent to

> max(frames(a.seg, "fi"))
> min(frames(a.seg, "f1"))

These functions have so far only been applied to a single segment. It is more
usual to consider the values of parameters over a whole range of segments.
For example, suppose we wanted to work out the average value of "£2"
over all /a/ segments in Utterances. First, obtain all /a/ segments in the
normal way

3.4. FRAMES 37

0.5Hz 1.5Hz "kHz

Figure 3.1: Example overlap

> s.a e phon("a™)
The mean value for each segment is given by
> meanv(s.a, "f2")

This produces 151 values because there are 151 /a/ segments in the database
(the values represent the average of the "£2" frames for each segment). It
is a straightforward matter to obtain the average of all these 151 values

> mean(meanv(s.a, "£2"))

The middle of the above expression may be written to an intermediate
object

> filel « meanv(s.a, "f2")
> mean(filel)

The functions discussed above can be used to get a rough idea of the degree
of overlap between two different segments types of a particular parameter.
For example, we know from acoustic-phonetics that F2 of /a/ is generally
lower than F2 of /e/. But when we examine many segments in continuous
speech, there is likely to be some overlap between the two. Thus, we might
expect /e/ and /a/ to overlap on F2 as shown in Fig 3.1.

Suppose we wanted to find out precisely how many /a/ and /e/ fall
in the region of overlap — i.e. from A to B in Fig 3.1. Let us in fact
consider how to determine the extent of this overlap on F2 for the middle
third of these segments (the middle third is chosen to try to exclude the
coarticulatory effects from neighbouring segments). First obtain the middle
third of all /a/ and /e/ segments from s.vow and deposit the contents in
mids.a and mids.e respectively

> # seg. list for /a/:
> s.a « s.vow[label(s.vow) == "a",]

38 CHAPTER 3. INTRODUCTION TO APS

> # duration of /a/ segs divided by three:
> middur «— dur(s.a)/3

> # copy of s.a:

> mids.a +~ s8.a

> # new start time:

> start(mids.a) « start(s.a) + middur

> # new end time:

> end(mids.a) — end(s.a) - middur

(Perform an analogous operation to obtain mids.e). Next obtain the aver-
- age values of F2 for these segment lists

> £2.a ~— meanv(mids.a, "f2")
> £2.e — meanv(mids.e, "£2'")

Confirm that the mean of all the /a/ segments is less than that of the /e/
segments.

> mean(f2.a)
> mean(f2.e)

It sometimes happens that we get spurious data; that is F2 values with
ridiculous values like 0 or 100,000 Hz. If this were to happen at this point
(it doesn’t in the current database) then before proceeding any further,
they should be removed from consideration by constraining F2 to occur
within a sensible range like 400 Hz to 2800 Hz

> which «— f2.a > 400 & £2.a < 2800
> £2.a «~ £2.a[which]

and perform the same operation on £2.e.

We now need to find point B in the above figure i.e. the maximum value
of /a/ on F2 and point A i.e. the minimum value of /e/ on F2. These are
obtained straightforwardly as follows

> max(£2.a)
> min(£2.e)

which I make to be 1638.22 Hz and 1162.175 Hz respectively. The question
is now: how many /a/ segments fall in this range? and how many /e/
segments? These solutions can be determined by creating a logical vector
in the appropriate range and summing for all TRUE

> which ~ f£2.a > 1162
> whichl «— f2.e < 1638
> sum(which)
> sum(whichi)

3.5. PLOTTING FACILITIES 39

which produces 151 for /a/ and 24 for /e/. We should really express these
as a percentage of the total number of /a/ and /e/ segments

> # no. of /a/ segs greater than 1162 Hz on F2:
> x1 «— sum(which)

> # no. of /e/ segs less than 1638 Hz on F2:

> x2 « sum(whichi)

> # total number of /a/ segs:

> x3 « slen(s.a)

> # total number of /e/ segs:

> x4 — slen(s.e)

> # result:

> ((x1 + x2)/(x3 + x4)) * 100

which shows that 69.9% of all /a/ and /e/ segments overlap on F2 - not
very encouraging!

Finally, maxp, minp and meanp return the times at which the maximum,
minimum and mean values of a parameter in a segment list occur. Like
meanv etc., they also take two arguments: a segment list and a parameter.
Thus, suppose we wanted to change the segments in s.a to start at the
time at which the F2 value was maximum. This can be done by

> start(s.a) — maxp(s.a, "f2")

3.5 Plotting Facilities

Before calling a plotting function we need to declare which graphical de-
vice we wish to draw on. Some of the devices S can plot on and their
corresponding functions are

> X11() # X Windows

> suntools() # Sun View

> tek4014() # Tektronics 4014

> hpgl() # Hewlett Packard plotter
> printer() # character terminal

Simply call one of these functions before calling a plotting function. If you
use printer you will have to call show after the plotting command to see
the result on your screen. See the S book or program documentation for
details on each function.

One of the most useful plotting facilities is bathtub which plots a pa-
rameter track against time and also labels the left and right context of such
a plot. Consider for example plotting F2 against time for the first 20 entries
of the segment list s.e. This would be specified as follows

40 CHAPTER 3. INTRODUCTION TO APS

> bathtub(s.ef[1:20,], "£2")

Note also that normalised time is plotted, that is, segments of different
durations appear as if they are of the same duration on this plot.

Another useful plot is the histogram. If we want to make a histogram
plot of the mean value of F2 over all /e/ segments, we first need to create
the appropriate data set

> s.e — phon("e")
> f2data « meanv(s.e, "£2")
> hist(f2data, 20)

The second argument to hist specifies the number of bars of the histograms.
If you leave out the second argument, a reasonable number of bars is pro-
vided.

3.6 Exercises
1. Write S expressions for the following

(a) a segment list of all /ei/ segments
(b) a segment list of all vowels
(c) a segment list of all fricatives
(d) a segment list of all front vowels /ii/, /e/ and /a/
2. Assume that all /ii/ segments have been stored as a segment list s. ii.
How could we alter the start times to be
(a) 20ms greater?, and .
(b) 20% of the total duration greater than the current start time?
3. Assume that no segment lists have been created. Write S expressions
for
(a) the labels of all the vowels
“(b) the labels of the first 30 vowels in the database
(c) the labels of all the voiceless stops /p/, /t/, /k/

4. Assume a segment list for all vowels has been created and stored as
s.vow. Using only this segment list, could we obtain the following?

(a) a new segment list of all /ii/ segménts

3.7. ANSWERS 41

5.

3.7

(b) a new segment list for the back vowels /uu/, oo/, /o/, [aa/

(c) a label file for the diphthongs /ai/ and /ei/

(d) a label file of everything except the diphthongs /ai/ and /ei/

(e) the total number of /a/ segments in s.vow

(f) a label file for all voiced stops that precede vowels

(g) the number of back vowels /uu/ and /u/ that follow the glides
/y/ and /w/ and precede the liquids /1/ and /r/

(You can assume in this question that the necessary segment lists are
already in existence; prefix the segment list by "s." in each case e.g.
s.1i (segment list for /ii/), s.vow (segment list for vowels) etc.)

Write S expressions for
(2) the mean value of F2 plus the mean value of F1 for all /oi/
segments
(b) the average F0 values (across all frames) of /e/ multiplied by 2

(c) the mean values of the bandwidth of F3 across the middle third
of all /ei/ segments

(d) the number of /a/ segments whose average F1 falls in the region
600Hz to 1100Hz

(e) the average of the maximum value of energy in the 2700Hz -
8000Hz band for all /s/ segments

Answers

. (a) phon("ei")

(b) phon(VOW)
(c) phon(FRIC)

(d) front «— c("ii", "e", "a")
phon(front)

. (a) start(s.ii) « start(s.ii) + 20

(b) start(s.ii) « start(s.ii) + dux(s.ii) / &

. (a) label(phon(VOW))

(b) label((phon(VOW)[1:30,1))
(C) label(phon(c("p", utu’ "k")))

42 CHAPTER 3. INTRODUCTION TO APS

4, (a) which « class(label(s.vow), "ii")
or
which « label(s.vow) == "ii"
newsegs «— s.vow[which,]

(b) BACK — c("uu", "00", "O", naau)
which « class(label(s.vow), BACK)
newsegs « s.vow[which,]

(c¢) 1.vow «— label(s.vow) A
which «~ class(l.vow, c("ai","ei"))
l.diph « 1l.vow[which]
or
l.vow « label(s.vow)
1.diph « l.vow[class(l.vow, "ai") | class(l.vow, "ei")]

or
l.diph « l.vow[l.vow == "ai" | l.vow == "ei"]

(d) 1.vow « label(s.vow)
which « class(l.vow, c("ai","ei"))
1l.ndiph « 1l.vow[!which]

(e) sum(label(s.vow) == "a")
or
sum(class(label(s.vow), "a"))

(f) 1.1hs « label(s.vow, -1)
VSTOP P c(“b", "d", "8")
l.vstop «— 1l.1hs[class(l.lhs, VSTOP)]

(g) 1.1hs ~ label(s.vow, —1)
l.xhs — label(s.vow, +1)
is.back «— class(label(s.vow), c("uu","u"))
which « is.back & class(l.lhs, c("y","s")) &
class(l.rhs, c("1","z"))
sum(which)

5. (a) meanv(s.oi, "£2") + meanv(s.oi, "fi")
(b) meanv(s.e, "syncspt") * 2

(c) thirdof — dur(s.ei)/3
nevei «— s.ei
start(newei) «— start(newei) + thirdof
end(newei) — end(newei) - thirdof
meanv(newei, "bw3")

3.7. ANSWERS

(d) which — meanv(s.a, "f£1") > 600 &
meanv(s.a, "f£1") < 1100
sum(which)

(e) mean(maxv(s.s, "e2700-8000"))

43

44

CHAPTER 3. INTRODUCTION TO APS

Chapter 4

Using APS

Familiarity with an edilor such as Emacs or vi is assumed in this chapter.

This chapter covers material that will enable students to write their own
functions inside APS. Some acoustic phonetic experiments are introduced
and functions are described to perform them.

At some stage, the user may wish to create their own functions: as we
saw earlier, this can be conveniently done inside S using an editor. The
default editor is Emacs. If you wish to use another editor such as vi, then
assign the object .Editor to the name of the editor as in

> .Editor « "vi"

This assignment will be effective even in later sessions of S.
The general form of a function is

function (arguments)

{

expression 1
expression 2

expression n
}
The arguments specify to the user how many variables must be entered for
example, meanv has two arguments, the name of a segment list and the
name of a parameter track e.g. meanv(s.vow, "£1"). Arguments must

always be separated by commas. Some examples of functions are given
below.

45

46 CHAPTER 4. USING APS

4.1 Example I: Removing values

Suppose we have calculated the mean of F2 over a segment list and we
would now like to remove all segments which have F2 less than 400 Hz and
greater than 2800 Hz. For a segment list x, this could be done as follows

> which «— meanv (x, "£2") < 400 |
meanv (x, "f£2") > 2800
> x « x[!which,]

If we want to incorporate this into a function, we would begin by using ed
> Remove — ed(FUNCTION)

(The function will be written to an object called Remove). This will put
you into the editor containing a skeleton function. Edit the function to look
like this

function(x)
{
which « meanv(x, "£2") < 400 |
meanv(x, "f2'") > 2800
x[twhich,]

}

The value returned by a function is the value of the last expression it
executes, in this case the new segment list. Write out the file from the
editor in the normal way. The function will now be stored under the name
Remove. If we now want to remove these F2 values from a segment list
called s.vow, we would enter

s.vow «~ Remove(s.vow)

However, it is more common to write the results of applying the function
to an object

newseg «— Remove(s.vow)

s.vow will now have no segments whose F2 values are less than 400Hz or
greater than 2800Hz.

A slight problem with the above function is that we are calculating the
mean value of F'2 twice (which could be time consuming). A better solution
would be to calculate F2 only once as follows

function (x)

{

4.2, EXAMPLE II: HERZ TO MEL | 47

f2data «— meanv(x, "£2")
which « f2data < 400 | f2data > 2800
x[twhich]

}

4.2 Example II: Herz to Mel

In acoustic phonetics, we often need to convert Hz to the Mel scale. The
relationship between Hz and Mel is given as follows (m is the frequency in
Mels, h the frequency in Herz)

o 1000
~ log2log(1 + h/1000)

We can convert this into an S expression as follows
1000/10g(2) * log(1 + (h/1000))
Putting this inside a function we have

function (h)

1000/10g(2) * log(i + (h/1000))

}

If we call this function Mel, then Mel(data) will convert values in a vector
from Hz to Mel.

4.3 Example III: Plotting -F1 Against -(F2
- F1)

A plot of against -F1 against -(F2 - F1) is often very useful when examining
vowel data because the positions of the vowels in this chart resemble those
of the vowel quadrilateral. However, in order to plot values on these axes
using a suitable plotting function inside S (e.g. eplot), we often need to
prepare the data in a single two columned matrix, e.g.

[,11 [,2]
[1,] -1345 -456
[2,] -1214 -987
[3,] -1548 -298
[4,] -1231 -892
[5,] -1812 -990

48 CHAPTER 4. USING APS

(-(F2-F1) is in the left hand column, -F1 in the right hand column)
In order to prepare data in this way, first calculate (for any segment
list) F1 and F2

> f1 « meanv(x, "fi")
> £2 « meanv(x, "f2")
> left « ~(£2 - f£1)
> right «— -f1

In the third line, left is made equal to -(F2 - F1) while right has values
of -F1. We must now bind these into a single matrix

> mat — cbind(left, right)
The whole thing inside a function would be

function (x)

{

£1 — meanv(x, "f1")
2 — meanv(x, "£2")
left « -(£2 - £1)

right « -f1
cbind(left, right)
}

Suppose we additionally wanted to remove all F1 values which were less
than 300Hz or greater than 1200Hz and also to remove F2 values which
were less than 500Hz or greater than 2800Hz. Such an operation could be
accomplished as follows

> whichi « £1 < 300 | £1 > 1200
> which2 «— £2 < 500 | £2 > 2800
> 1 — f1[!which]
> £2 « f£2[!which]

Incorporating this into the function we have

function (x)

{
f1 — meanv(x, "f1")
12 «~ meanv(x, "f£2")
whichl «— f£1 < 300 | £1 > 1200
which2 «— £2 < 50O | £2 > 2800
1 «— fi[twhich]
12 — f£2[!which]

4.4. EXAMPLE IV: CALCULATING THE SLOPE OF F2 49

left «— —-(£2 - £1)
right « -f1
cbind (left, right)

}

We can also call other functions inside functions. For example, suppose
we had written the Mel function (described above) which converted Hz to
Mel and would like to plot -F1 against -(F2 - F1) in Mels. This could be
done straightforwardly by converting left and right into Mels

function (x)
{
1 — meanv(x, "f1")
£2 « meanv(x, "f2")
whichl «~ £1 < 300 | £1 > 1200
which2 « £2 < 500 | £2 > 2800
f1 «— f1i[!which]
2 — f2[!which]
left «— -Mel(f2 - f1)
right « -Mel(f1)
cbind(left, right)

4.4 ExampleIV: Calculating the Slope of F2

In this example, the object is to calculate the slope of F2 from the midpoint
of a segment to the end of a segment. In fact, we shall calculate (a) the
average F2 value from the midpoint for 15ms and (b) the average F2 value
for the last 15ms and then connect (a) and (b) by a straight line. The
slope (in Hz/ms) is then the degree to which the line deviates from the
horizontal. Begin by creating two segment lists. The first extends from the
midpoint for 15ms and the last from 15ms before the end to the end of the
segment

> midpoint « dur(x)/2
> msegs — cbind(midpoint, midpoint + 15, utt(x))
> esegs «— cbind(start(x), end(x) - 15, utt(x))

Next calculate the average value of F2 for both segment lists

> £2m — meanv(msegs, "f2")
> f2e — meanv(esegs, "f2")

50 CHAPTER 4. USING APS

The slope will be given by the difference between the average values of
£2e and f2m divided by the duration from the end of the segment to the
midpoint

> (£2e¢ - f£2m) / (end(x) —~ midpoint)

The above only applies to F2; we could also make it apply to either F1
or F3 by creating a second argument in the function and replacing "£2" by
this argument name. The whole function then becomes

function(x, trackname)

{
midpoint — dur(x)/2
msegs «— cbind(midpoint, midpoint + 1B, utt(x))
esegs « cbind(start(x), end(x) - 15, utt(x))
fm «— meanv(msegs, trackname)
fe «— meanv(esegs, trackname)
(fe - fm) / (end(x) - midpoint)

}

4.5 Example V: Vowel Normalisation

Different speakers have different vocal tract shapes and so even though two
speakers may produce the same phonetic type like /i/, the formant fre-
quency values will be different. In particular, the formant frequency values
of female speakers tend to be higher than those of male speakers. Ac-
cordingly; a comparison of formant frequency values across different vowel
types from a large corpus of male and female speakers requires some kind
of normalisation in order to make the comparison meaningful.

One possible vowel normalisation technique, outlined in Gerstman (1968),
is to rescale minimum and maximum F1 values in the range 250 Hz - 750
Hz and minimum and maximum F2 values in the range 850 Hz - 2250 Hz.
Thus, if a speaker has a minimum value of F1 at 400 Hz, a maximum value
of F1 at 1200 Hz, then a speaker’s F1 value which is exactly halfway at
800 Hz would be translated into the halfway value on the scale 250 - 750
Hz i.e. 500 Hz. How could we write a function to perform this kind of
normalisation?

We begin by noting that if a range which extends from R,in t0 Rmaz
is to be translated linearly into another range Syin to Symae, then a value
r on the old range has a value on the new range, s, which is given by

Rmin)(Smaz - Smin)
(Rmaz - Rmin)

3=Smin+2(r—

4.5. EXAMPLE V: VOWEL NORMALISATION 51

Thus if a speaker’s F1 range extended from 400 to 1200 Hz and the new
scale extended from 250 to 750 Hz, the rescaled F1 values r,., would be
given by

400)(750 — 250)

1200 — 400

where r is an F1 value of a speaker. The following function rescales accord-
ing to the Gerstman technique and takes two arguments for the F1 and F2
values of a given speaker

function(f1i, £2)
{
fimin «— min(f£1)
fimax « max(f1)
£2min ~— min(£2)
f2max « max(f2)
newfl — 260 + ((£1 - fimin) * (750 - 250) /
(fimax - fimin))
newf2 « 860 + ((£2 ~ f2min) * (2250 ~ 850) /
(£2max -£2min))
cbind(newf1, newf2)

}

The rescaled F1 and F2 values are then bound together in a single two
‘columned matrix. More usually, we would want to rescale F1 and F2 di-
rectly from the mean values of F1 and F2 derived from a segment list. Such
a function, in which x can be any segment list, is shown below

Tres = 250 + (7‘ —

function(x)
{
1 «— meanv(x, "f1")
12 « meanv(x, "f2")
fimin «— min(f1)
fimax +— max(f1)
f2min — min(£2)
f2max + max(f2)
newfl « 260 + ((£1 - fimin) * (750 - 250) /
(fimax - fimin))
newf2 «— 850 + ((f£2 - f2min) * (2250 - 850) /
(£2max - f£2min))
cbind(newf1, newf2)

}

Better still, let’s leave it to the user to decide whether F1 or F2 is
to be rescaled. In this case, we would need to incorporate a conditional

52 CHAPTER 4. USING APS

if expression into the function which depended on whether the user had
chosen F1 or F2. Informally, we would like to say

“If the user decided on F1, then Spin and Spmaz (see the formula
above) should be set to 250 and 750 Hz respectively; otherwise,
if the user decided on F2, Syin and Synap should be set to 850
and 2250 Hz respectively.”

In S the syntax for an if expression is the following

if(statement)
expression 1
expression 2

expression n

The expressions are the ones which will be evaluated if statement is TRUE.
Note that if there is more than one expression, they must be inside braces
{ } and the statement must be enclosed by parentheses. In the context of
the following function, we could say

function(segs, formant)
{
f — meanv(segs, formant)
Rmin « min(f)
Rmax + max(f)
if (formant == "f£1")
{
Smin « 250
Smax «— 750
}
if (formant == “f£2'")
{
Smin « 850
Smax « 2250

Smin + ((f - Rmin) * (Smax - Smin) / (Rmax - Rmin))

}

(Note the braces are automatically indented when you quit from ed). The
first argument of the function, segs, is a segment list and the second ar-
gument, formant, is a parameter track which should be either F1 or F2. £

4.6. EXERCISES 53

is the mean value of either F1 or F2 and Rmin and Rmax the minimum or
maximum values. We now test whether the second argument specified by
the user is "£1". If it is, then the minimum and maximum of the scales are
set to 250 and 750 Hz respectively; if y is "£2", the minimum and maximum
values are set to 850 and 2250 Hz. The final statement is the normalisation
which takes the relevant Smin and Smax values,

4.6 Exercises

1. The relationship between the Hz and Bark scale is defined as
b= 13 arctan0.76 f + 3.5 arctan(f/7.5)2

where b is frequency in Bark and f is frequency in kHz and arctan is
arc tangent in radians. Write a function which takes a single argument
and converts from Herz to Bark. (NB. arctan in radians is defined
inside S as atan e.g. arctan 12 radians is atan(12) in S. Note also

that 1kHz = 1000Hz).

2. Write a function which takes a segment list as a single argument and
-performs vowel normalisation according to the algorithm set out in
Nearey (1977) in which the average value of the log frequencies of F1
and F2 across all vowels is subtracted from each F1 and F2 value of
each vowel. More specifically, find the logarithm of F1 and F2 for all
vowels (where x is a segment list of vowels)

G1 «— log(meanv(x, "£1"))
G2 «— log(meanv(x, “£2"))

Then work out Gbar, the average value of G1 and G2 together
Gbar +— mean(c(G1i, G2))

Then subtract Gbar from G1 and G2
Ginew « G1 - Gbar G2new « G2 - Gbar

Finally, rescale Ginew to fall within 250 Hz to 750 Hz and G2new to
fall within 850 to 2250 Hz using the formula

(7' - rmin)(smaz - Smin)

Smaz — Tmin

5 = Smin +

where (for F1), smin i8 250, spmaz i8 750, r is Ginew, ry;y, ismin(Ginew)
and rpgep 18 max(Ginew). The output of the function should be a two
columned matrix with normalised F1 and F2 values.

54 CHAPTER 4. USING APS

3. Modify the function for vowel normalisation you wrote above to re-
move all segments which have either

F1 < 300
F1 > 1200
F2 < 500
F2 > 2800

These segments should be removed before you compute G1 and G2.

4.7 Answers

These are of course only possible solutions; you may well have other better
ones.

i. function(x)
{
xHz « x/1000
const — (kHz/7.5) * (kHz/7.5)
(13 * atan(0.76 * kHz)) + (3.5 * atan(const))

}

2. function(x)
{
Gl ~ log(meanv(x, "£1"))
G2 — log(meanv(x, "“£2"))
Gbar ~— mean(c(G1, G2))
Gin « G1 - Gbar
G2n ~ G2 ~ Gbar
Gin.min ~— min(Gin)
Gin.max — max(Gin)
G2n.min — min(G2n)
G2n.max «— max(G2n)
Ginorm — 260 + (((Ginew ~ Gin.min) * (750 - 250)) /
(Gin.max - Gimin))
G2norm ~ 850 + (({G2new - G2n.min) * (2250 - 850)) /
(G2n.max - G2min))
cbind(Ginorm, G2norm)

}

3. function(x)

{

11 « meanv(x, "f1")

4.7. ANSWERS 55

12 ~ meanv(x, "f2")

whichf1l « f£1 < 300 | £1 > 1200

whichf2 — £2 < 50O | £2 > 2800

finew «~ fi[!whichf1]

f2new «— f2[!whichf2]

Gl «— log(finew)

G2 «— log(f2new)

Gbar — mean(c(G1l, G2))

Gin «— G1 - Gbar

G2n «— G2 - Gbar

Gin.min — min(Gin)

Gin.max «— max{(Gin)

G2n.min «— min(G2n)

G2n.max « max(G2n)

Ginorm « 250 + (((Ginew - Gin.min) * (750 ~ 250)) /
(Gin.max ~ Gimin))

G2norm « 850 + (((G2new - G2n.min) * (2250 - 850))
(G2n.max - G2min))

cbind(Ginorm, G2norm)

56

CHAPTER 4. USING APS

Chapter 5

Installing APS

To run APS you will need: 1) an APS distribution package, 2) a Sun4,
and 3) the S system. APS is an add-on package to the S system. S is a
programming environment for data analysis and graphics. APS runs on
S-PLUS, a version of S from Statistical Sciences Inc., version 2.2 or 2.3.
Although it has not beed tested and therefor cannot be guaranteed, it is
expected that APS would also run on AT&T S, July 1989 release, as S-
PLUS is based on AT&T S.

1. Reading the Distribution

It is suggested that you install APS under your existing S directory
structure. You will initially need 2.5Mb of space which can later be
reduced to 0.5Mb. APS is distributed either on a DOS 3l inch disc
orom a Z inch tape cartndge The installation can be performed by
any user who has write permission in the S home directory.

(a) If you have a DOS disc, first copy the file APS.TAR from the
DOS disc to a file in the S home directory called aps. tar (if you
use £tp, use binary mode). In the S home directory execute the
command

tar xvf aps.tar
Then remove aps. tar
Im aps.tar

(b) If you have a tape cartridge, first move to the S home directory.
Mount the tape cartridge in the tape drive. Enter the command

57

58

CHAPTER 5. INSTALLING APS

tar xpf /dev/rst8

You will now have created a directory called aps under the S home
directory. We will call this the APS home directory. The APS home
directory in turn contains the following subdirectories: 1) src, con-
taining all .o files and . ¢ files necessary for making a new version of
S with the APS code compiled into it, 2) .Data which is the public
directory of S objects for APS including all functions and datasets, 3)
.Data/.Help containing S ‘help’ pages for APS objects, and 4) emacs
containing a public-domain package that allows S to run in an Emacs
buffer, providing a convenient method of editing and re-executing the
history of S commands. '

. Modifying S scripts

Three S files need to be modified in order to make and run APS.
Filenames are all relative to the S home directory.

(a) newfun/1ib/Smakefile. Change the line that looks like this
SYSLIB = -1F77 -1I77 -1lm
to look like this
SYSLIB = -1m # -1F77 -1I77 -1lm

This removes the need of a FORTRAN-77 library. The APS
distribution:contains public domain object code for the necessary
functions.

(b) cmd/NEW. After the line which start with this (line 4 in our ver-
sion):
-0) which=o; S_FUNCTIONS=$SHOME/os;
add the line
-aps) which=aps.; shift;;

This will cause the start-up script to look for a special version
of S which contains the APS code.

(c) s or Splus. This is the shell script placed in the users’ search
path which starts the S process. It’s name depends on which
version of S you are using. In order to get it to look for an APS
version of S change the line

0) exec $SHOME/cmd/$S_DEFAULT
to look like this
0) exec $SHOME/cmd/$S.DEFAULT -aps

59

3. Making APS

(a)

(b)

Change to the subdirectory src
¢d src

If your command to start up S is not S, then edit the last line of
the file 1oad to start with the appropriate command, so instead
of

S LOAD $£77stutf $obj $src
put, for example,

Splus LOAD $£77stuff $obj $src
Enter the command

load

This will take a few minutes to run. When it is finished you
should see the message

Local version of S loaded

You will now have a large file called local.Sqpe. It contains all
the S code and the APS code linked together.

4. Installing APS

(a)

(b)

To put local.Sqpe in the correct place for execution by all users,
while in the directory aps/src enter

install

We will now create a new S function, aps, which connects the
APS directory to the S search path. From aps/src start up S
in the usual way

S # or Splus, elc.
Then, in reply to the S prompt >, enter the S command
mkaps ()

The function aps will now have been created and put in the

_public directory of S functions. An S user who calls this function
will now gain access to all the APS functionality.

At this point it is advisable to set up some defaults for the new
user of APS. Before we do that, use the function we just created
to gain access to the APS functions. Enter

aps()

60

CHAPTER 5. INSTALLING APS

5. Local Setup

(a)

(b)

(©)

To get APS to read your local format label files and /or track files,
follow the procedure described in Chapter 6 “Speech Databases
_for APS”.

In .Data, the public directory of S objects for APS, there are
some datasets containing the sets of phoneme labels that occur
in the label files. The dataset STOP, for example, contains the
labels of the six English stops /p/, /t/, /k/, /b/, /d/ and [g/.
These datasets are distributed as CSTR MRPA labels (Machine
Readable Phonetic Alphabet). You may wish to change these to
reflect the contents of your own database. See Phonemes in the
Chapter 7 “APS Functions” for a full list of these datasets. To
change one of them, start S and APS in the APS home directory
and assign, for example
> vow — C("A" . "E” , 'l&" , "I" , "0" , lloll ,
"U" R "#ll R “J" R "w")

The object .Editor defines the default editor when using the
function ed. You may wish to change the public copy by running
S and APS in the APS home directory and assigning thus, for
example

> .Editor ~ "vi"

6. S in Fmacs

The directory emacs contains-public domain Emacs code for running

Sin

an Emacs buffer. It is particularly useful for allowing easy editing

of your history of S commands. The package includes an S mode for
editing S data and functions. To install it follow the instructions in
S.el.

If your S is called by means of a name other than ”S”, eg. ”Splus”,
then edit the line in S.el

(defvar inferior-S-program “S"

to look like

(defvar inferior-S-program "Splus"

OF as appropriate.

Chapter 6

Speech Databases for
APS

How does APS read a speech database? This question is answered below.
This should be of interest to someone who wishes to start using APS on
an existing database and to the person who is installing APS for the first
time. '

Speech databases for APS consist of label files and track files, Label
files contain lists of start-time/end-time/label triples; track files contain
vectors of values at a regular interval (eg. 5 msec) generated by various
signal processing algorithms. There must be a label file and a track file for
each utterance in the database.

Included here is a description of how APS reads a database, a list of
accepted formats for label files and track files, how to make APS read a
new database and, if APS does not recognise your label file or track file
format, how to write a new label file and track file reader for APS.

6.1 How The Speech Database Is Read

APS recognises various database formats. Currently recognised formats are
indicated in Table 6.1.

If you have label files and track files in the internal formats shown in the
table, you may now wish to read Section 6.3 “Indexing a New Database”.

How does APS determine the database format? This is how it works:
It constructs the name of the file using the database format specified in the
first label file entry in Table 6.1. Exactly how a filename is constructed for
a particular database format is described in Section 6.2. If this file does not

61

62 CHAPTER 6. SPEECH DATABASES FOR APS

Label/Track | Extension | Filename Construction | Internal Format
Label .mrp Standard AUDLARB label
Label .8y1 Standard AUDLAB label
Label .trn Standard SAM-BA, OSPREY
Label .seg Standard CSTR ISD

Label .1lab Olivetti Olivetti label

Track .tk Standard AUDLAB track
Track .otrk Standard AUDLAB track
Track .otr Standard AUDLAB track
Track .dbtrk Standard Old AUDLAB track
Track .dbt Standard Old AUDLAB track
Track .1pc Olivetti Olivetti track

Table 6.1: Database formats for label files and for track files. The entries for
label files and track files form separate lists. The top section shows database
formats for label files and the bottom section shows database formats for
track files. Each database format has a filename extension which determines
the internal format of the files. As indicated, there are two ways in which
filenames are constructed.

exist then try constructing a new filename using the the second entry in the
table. Continue trying all the database formats for label files until one is
found that generates a filename that exists. This then becomes the selected
.database format for label files. The same method is used to determine the
-database format for track files except that the search spans the track file
database formats shown in the bottom half of Table 6.1.

When a file is found, the internal file type is determined by the extension
on the filename. On this basis the appropriate read function for this type
of file is selected, the function is then used to read the file and the data is
made available to the calling function.

To save performing the search on every utterance the selected database
format is remembered for subsiquent label file requests. A separate note is
kept of the selected database format for track files.

While reading the database, if a database format ever fails by generating
a filename that does not exist, the search for a database format is started
again from the top of the list. This allows database formats to be mixed
in a single database. Note that the order of the search becomes significant
when there exists more than one database format. When this case it is
the format that occurs first in Table 6.1. which is used and any others are
never seen. It is possible to change the order of these entries in the internal
table; see Section 6.4 “Adding New Database Formats”,

6.2. HOW FILENAMES ARE CONSTRUCTED 63

6.2 How Filenames Are Constructed

APS accesses the speech database by means of an S object called Utterances.
This is a character vector in which each element describes the location of a
single utterance in the database. APS functions such as phon, tracks and
above use this object to locate the label files or track files it needs.

There will be default version of Utterances available to you. The con-
tents will vary according to your local installation, but typically it will
contain all the utterances available in some public database. To inspect
the first six utterances while in S (after issuing the command aps() if you
have not already done so) enter Utterances[1:68]. At CSTR and on the
distribution copy of APS you will get

> Utterances[1:6]

[1] "/DB/atr20/be dri/mgsw0/sc001/3c001"
[2] "/DB/atr20/be_dri/mgsw0/sc002/8c002"
[3] "/DB/atxr20/be.dr1/mgsw0/8c003/3c003"
{4] “/DB/atr20/be dr1/mgsw0/sc004/3c004"
[5] "/DB/atr20/be_dri/mgsw0/ac005/sc005"
[6] "/DB/atr20/be.dri/mgsw0/sc008/3c006"
>

For most database formats Utterances gives the complete pathnames of
the label files and track files, but with the filename’s extension stripped
off. In the current version of APS there are, however, two possible ways in
which filenames are constructed, Standard and Olivetti. Refer to Table 6.1.
to see which applies to your database format. We will now describe these
in turn. If neither of these methods are suitable for your installation then it
is possible to define your method of filename construction; see Section 6.4
“Adding New Database Formats”.

6.2.1 Standard Filename Construction

Each element in Utterances is the complete pathname of the label file or
track file, except for the filename extension which has been stripped off.
When an APS function wishes to read the label file associated with the
first utterance in the database, it takes the string from the first element
of Utterances and concatinates a label file extension onto the end of the
"string to form the complete pathname of the label file. The extension is
determined by the selected database format for label files as described in
Section 6.2. '
For a function like phon, which by default reads all the utterances in the
database, this operation is repeated for all the elements in Utterances. An

64 CHAPTER 6. SPEECH DATABASES FOR APS

equivalent procedure is followed when forming track file names for functions
such as above; in this case a track file extension is concatinated on the end
of the string instead of a label file extension.

To illustrate, if we are using the first database format for label files
shown in Table 6.1., then filename construction is Standard and the filename
extension i8 .mrp. The label files associated with the first ten utterances
shown above would therefor be

/DB/atr20/be.dr1/mgsw0/8c001/3c001 .mrp
/DB/atr20/be_dri/mgsw0/8c002/8¢002.mrp
/DB/atr20/be.dr1/mgsw0/8c003/3c003 . mxp
/DB/atr20/be_dri/mgsw0/sc004/3¢c004.mrp
/DB/atr20/be dri/mgsw0/8c005/8c005 .mrp
/DB/atr20/be dri/mgsw0/3c006/3c006 .mrp

The utt fields of segment lists are decoded in the same way as Utterances.
Suppose for example that the segment list

start end utt
»8g9" "101" "/DB/atr20/be.dri/mgsw0/sc001/sc001"
"1192" "1369" "/DB/atr20/bedri/mgsw0/sc001/3c001"
"1269" *1308" "/DB/atr20/bedri/mgsw0/sc002/sc002"
"1807" "1867" “/DB/atr20/be_dri/mgsw0/sc002/3c002"
"go" "122" "/DB/atr20/be.dri/mgsw0/sc003/scO03"

o 6 6 606

was passed to the function maxv, then the track files corresponding to each
segment would be, respectively,

/DB/atr20/be_dr1/mgsw0/3c001/8c001.trk
/DB/atr20/be.dri/mgsw0/s8c001/8c001.trk
/DB/atr20/be_dr1/mgsw0/sc002/3c002.trk
/DB/atr20/be.dr1/mgsw0/sc002/3c002.trk
/DB/atr20/be dr1/mgsw0/sc003/8c003.trk

It is quite possible to have relative pathnames in Utterances. This
means that if you have a private database of a few files in, say, a neigbouring
directory called data then Utterances may contain something like

[1] »../data/utt01” "../data/utt0o2" "../data/utt03"
[4] »../data/utt04"

The same rules for forming filenames apply to these as to complete path-
names so that the Utterances shown above would index the label files and
track files

6.2. HOW FILENAMES ARE CONSTRUCTED 65

../data/utt01i .mrp ../data/utt02.mrp
../data/utt03.nrp ../data/utt04.mrp
../data/utt01.trk ../data/utt02.trk
../data/utt03.txk ../data/utt04.trk

Files can be stored in the current directory by indexing with an Utterances
such as

[1] "utt01" "utt02" "utt03" "utt04"
to access the files

utt0l.mrp utt02.mrp utt03.mrp utt04.mrp
utt01l.trk utt02.trk utt03.trk utt04.trk

6.2.2 Olivetti Filename Construction

APS recognises Olivetti internal formats for label files and track files. The
manner in which filenames are constructed for these internal formats are
somewhat different. Table 6.1. shows that there is currently one inter-
nal format for both label files and track files which use Olivetti filename
construction.

Unlike:Standard filename construction pairs of label files and track files
with Olivetti filename construction are not stored in the same directory
but are stored in parallel directories. The Utterances shown earlier would
expect the following label files

/DB/atr20/be dri/mgsw0/sc001/1lab/s¢c001.1ab
/DB/atr20/be_dr1/mgsw0/3c002/1ab/sc002.1ab
/DB/atr20/be.dr1/mgsw0/sc003/1ab/8c003. lab
/DB/atr20/be_dri/mgsw0/sc004/1lab/sc004.1ab
/DB/atr20/be dr1/mgsw0/sc005/1ab/sc005.lab
/DB/atr20/be dr1/mgsw0/8c006/1ab/s8c006.lab

The track files would be

/DB/atr20/be_dri/mgsw0/sc001/1pc/8c001 . 1pc
/DB/atr20/be_dri/mgsw0/s8c002/1pc/8c002.1pc
/DB/atr20/be dr1/mgsw0/sc003/1pc/3¢003.1pc
/DB/atr20/be_dr1/mgsw0/8c004/1pc/s8c004. 1pc
/DB/atr20/be_dr1/mgsw0/sc005/1pc/sc005.1pc
/DB/atr20/be_dr1/mgsw0/sc0068/1pc/sc006.1pc

As with Standard filename construction Utterances can have simple
pathnames relative to the current directory.

66 CHAPTER 6. SPEECH DATABASES FOR APS

6.3 Indexing a New Database

To get APS to read a new database you will have to create an Utterances
dataset that indexes the appropriate files. This procedure would also be
followed when. installing APS for the first time in order to create a default
database for APS users.

Take a look at Table 6.1. Do the internal formats and filename exten-
sions of your label files and track files appear in the table? If they do, then
things are fine — continue reading this section. If your the internal formats
are in the table but the filename extensions are not the same, then you
can correct this by creating symbolic links to your files with the extension
shown in the table; alternatively you can add a new entry to the APS in-
ternal copy of Table 6.1. and recompile APS (the section below, “Adding
New Database Formats”, explains how to do this.) If your internal format
is not in the table you will have to write some C functions that read your
file format; follow the procedure described in the next section.

Assuming that you have one of the recognised internal formats and that
you have the appropriate extension on the filenames, do the files appear
in the correct place in the directory structure? If your internal format
uses Standard filename construction then each label file must oceur in the
same directory as the corresponding track file. If your internal format uses
Olivetti filename construction then corresponding label files and track files
must be stored in parallel subdirectories whose names are the same as
the filename extensions (1ab for label files and 1pc for track files). Label
files and track files for separate utterances may be stored anywhere — at
different levels of the directory structure or even different filesystems. The
above restrictions apply only to matching pairs of label files and track files.

Once all the label files and track files are in place in an internal format
recognised by APS it is time to create the dataset Utterances that will
index these files. This is done using the APS function mkdb. Start APS
and enter the command mkdb which will look something like this

> mkdb("/DB" . uxsyln , "3")
il s L
Using the find command mkdb will create Utterances to index all files
with a given filename extension in a given part of the filesystem.

The first argument to mkdb indicates the root of the directory structure
that contains all the label files and track files. In the example /DB is at
the root of a filesystem, but this could also be a pathname relative to the
current directory, or the current directory itself. Because the elements of
Utterances are propagated into the segments of segment lists it will save
space if they can be kept as short as possible, either by using pathnames

6.4. ADDING NEW DATABASE FORMATS 67

relative to the current directory or by placing the database close to the root
directory on the filesystem.

The second argument is the filename extension. Every file with this ex-
tension found beneath the given directory generates an entry in Utterances.
The third argument indicates the filename construction. Refer to Table 6.1.
Further details on mkdb may be obtained from the APS function documen-
tation or by saying help(mkdb) while in S.

6.4 Adding New Database Formats

The table of database types shown in Table 6.1. is compiled into the ex-
ecutable file which includes both S and APS code. In order to alter this
table it is necessary to make a new executable file for APS. This section
describes how to do this.

In reverse order of difficulty these are the alterations which are likely to
be made to the table. The easiest thing is to simply change the order of
the entries in the table. This has the effect of assigning priority when more
that one format exists. (See earlier sections.) To do this requires editing
the table and recompiling APS.

A little harder would be defining a new method of filename construction
in addition to the Standard and Olivetti filename constructions already
defined. This requires writing one C function which takes the name of the
utterance returns the actual filename.

Hardest is adding a new internal format to the list. This requires one
C function for label files and five C functions for track files.

After a description of the internal table of database formats each of
these tasks are described below. You will need to know how to perform the
former tasks to perform the latter tasks.

6.4.1 Internal Table of Database Formats

The directory src in the APS distribution contains the internal copy of
Table 6.1. in a file called types.c. This contains C source code that
including two structures called Labtypes and Tracktypes which define the
database formats for label files and track files respectively. With some
#ifdef statements removed they look something like this

struct ftype Labtypes[] = {

/* First type is a cache for saving the previous type read */
"lab", ufilename_o, readlab, 0, 0, 0, O,

"mrp", ufilename, readmrpa, 0, 0, 0, O, /* MRPA */

"8yl", ufilename, readmrpa, 0, O, O, O, /* MRPA */

68 CHAPTER 6. SPEECH DATABASES FOR APS

“"tyn", ufilename, readtrn, O, O, O, O, /* SAM-BA, OSPREY */
“seg", ufilename, readseg, O, 0, 0, 0, /* ISD ASCII */
“"lab", ufilename_o, readlab, O, 0, 0, 0, /* Olivetti %/

0, 0, 0, 0,0,0

};

struct ftype Tracktypes[] = {

/% First type is a cache for saving the previous type read */

"lpc', ufilename_o, readlpc, nextlpc, tracknames_lpc,
ntracks_lpc, frameshift_lpc,

/* AUDLAB track file */
"trk", ufilename, readtrk, nexttrk, tracknames_trk,
ntracks_trk, frameshift_trk,

/* AUDLAB track file */
“otrk", ufilename, readtrk, nexttrk, tracknames_trk,
ntracks_trk, frameshift_trk,

/* AUDLAB track file with truncated PC filename extension */
“otr", ufilename, readtrk, nexttrk, tracknames_trk,
ntracks_trk, frameshift_trk,

/* 01d "denjlsa001"-type AUDLAB track file */
*dbtrk", ufilename, readotrk, nextotrk, tracknames_otrk,
ntracks_otrk, frameshift_otrk,

/* 01d "denjlsa001"-type AUDLAB track file with truncated
* PC filename extension */

“dbt", ufilename, readotrk, nextotrk, tracknames_otrk,
ntracks_otrk, frameshift_otrk,

/* Olivetti track file */
"lpc", ufilename_o, readlpc, nextlpc, tracknames_lpc,
ntracks_lpc, frameshift_lpc,

0,0,0,0,0,0,0
};

Both Labtypes and Tracktypes are arrays of the structure £type. Each
element is a database format that corresponds directly to a line in Table 6.1.
The order in which database formats are tried is as given in the elements of

6.4. ADDING NEW DATABASE FORMATS 69

this array. Note that the first entry is a cache where the current database
format is stored for speedy access. Do not store the only definition of a
database format in this first element.
The definition of the structure £type is found in the file types.h. This
is it:
struct ftype {
char *extn; /* Filename extension */
char *(*decoder)(); /* Function that translates an Utterance
* into a filename */
int (*reader)(); /* Function that reads the file. Will read
* the whole file for label files and a
* gselected track for track files */
int (*nexttrack)(); /* Function that simply reads the next
* track that happens to be in the current
* track file */
int (*tracknames)(); /* Function that gets the track names */
int (*ntracks)(); /* Function that gives the number
* of tracks */
int (*frameshift)(); /* Function that returns (and sets)
* FrameShift */
};

The field extn:points to the -filename extension for the database format.
- The remaining fields are all pointers.to functions. These functions get called
when APS needs to read alabel file or track file. Most of the functions are
used for reading track files only — those functions that do not apply to label
files are set to zero in Labtypes.

For a definition of what these functions do see the comments associated
with the structure ftype as shown above. The aps distribution directory
src contains the source code for the Olivetti label file database format
(filename extension .lab and Olivetti track file database format (filename
extension .1lpc in the files readlab.c, readlpc.c and ufilenameo.c.

6.4.2 Altering the Table of Database Formats

The order of the internal copy of Table 6.1. defines the priority of the
database formats. If there are label files (or track files) for an utterance in
two database formats then only the format which appears first in the table
is ever read.

To change the order of the entries in the table you must edit the struc-
ture Labtype or Tracktype in the file types. ¢ as appropriate. The order of
the elements in these structures define the order of the table. Note that the

70 CHAPTER 6. SPEECH DATABASES FOR APS

first database format in each structure is the cache for the current database
format. Do not store the only copy of a database format here — it will be
overwritten after every successful file access. The first, cache entry should
contain a copy of the database format most often used at your installation.

After creating a new version of types.c it is necessary to recompile
a new version of S with APS. Simply enter load. This will make a new
version of the S executive which includes all the APS code and the new
types.c. When this has completed after a few minutes you should see the
message

Local version of S loaded

You will now have a large file called local.Sqpe. It contains all the S code
and the APS code linked together. When you run S in the current directory
you will use this version instead of the public version. To install this version
in the public place simply move local.Sqpe to the S subdirectory cmd and
rename it aps.Sqpe.

6.4.3 Adding a New Method of Filename Construction

The function pointer decoder pointer to the function that defines the
method for filename construction, that is, how to convert the utterance
name in Utterances to an actual label file name or track file name. The
file ufilename_o.c in the APS distribution directory src contains the func-
tion ufilename o which defines Olivetti filename construction. The form
of this function, which is the same for all decoder functions, is as follows

char * ‘

ufilename_o(utterance, type, dbdir)
char *utterance;

char *type;

char *dbdir;

It takes the utterance name, an element of Utterances, in the argument
utterance. The filename extension is given in type. The argument dbdir
is historical. It contains the value of the S dataset Dbdirs which may
be used to specify a database in some way. The decoder function then
constructs the filename from these arguments and returns this as the value
of the function.

A new method of filename construction can be defined by modifying this
function or by writing a new function that conforms to the specification just
described. It can be used as part of a new database format by adding a
new entry in the structure(s) Labtypes and/or Tracktypes. If you put a

6.4. ADDING NEW DATABASE FORMATS 71

function into a new file, then edit the file load in the directory src and
add the new filename to the list

src="types.c ufilename.o.c readlab.c readlpc.c"

Follow the procedure described in the previous section to create a new
local.Sqpe.

You should enhance mkdb so that it can create Utterances in the correct
format for the new method for filename construction.

6.4.4 Adding New Internal Formats

If you have label files or track files in a format other than those shown in
Table 6.1. you will have to write some functions and compile them into
S. Refer to the comments in types.h as quoted above and to the example
source code provided for Olivetti formats.

For label files you will have to write one function, pointed to by the
function pointer reader, that reads a label file and returns the contents
via one of its arguments. The file readlab.c contains the source for the
function that reads Olivetti label files.

Track files require more work. You must provide a function for all the
function pointers described in types.h. See the file readlpc.c for the
source to all the necessary functions for Olivetti track files.

‘Follow the procedures described in the previous sections to create a new
local.Sqpe.

72

CHAPTER 6. SPEECH DATABASES FOR APS

Chapter 7

APS Functions

The following pages contain documentation for all APS functions and datasets.
They are also available online from within S by typing help(phon) for ex-
ample. Future changes to these functions will be reflected in the online

copy.

73

74 S Function Documentation

above Run Threshold on Track to Create Segments above

above(trackname, threshold, difference =FALSE)
below(trackname, threshold, difference = FALSE)

ARGUMENTS
trackname character string indicating the track (acoustic parameter) on which to threshold. Possi-
ble values are given by the function tracks.
threshold value for the threshold. A number.
difference If set to TRUE will perform a first difference on the values in the track before thres-
holding. Default is FALSE - track is unmodified.

VALUE
An APS segment list where the track values of all the frames within the segments are
less than (below) or greater-than-or-equal-to (above) the threshold.
For a description of the format of a segment list see the function segs.
EXAMPLES
below("f1",610.5) # generate all the segments whose frames contain values
less than 610.5 on the track "f1".
above("ediffnis",6,T) # segments with continuous increase of 6.0 or more on
track "ediffnls".
aps Start Up APS aps
aps()
When called within S, the function aps gives access to all APS functions and data. It
does this by adding the appropriate directory to the search list of data directories.
SEE ALSO
attach
EXAMPLES
aps()

as.segs see segs ' as.segs

S Function Documentation cderr 75

bathtub Plot Superimposed Track Contours bathtub

bathtub(segs, trackname, difference = FALSE, lhs =20, rhs =20, ymin= <min value>,
ymax = <max value>, labx="Normalised time", laby = trackname, color=4)

ARGUMENTS
segs Segment list,
trackname character string indicating the track (acoustic parameter) on which to threshold. Possi-
ble values are given by the function tracks.
difference If this is TRUE then a first-difference is performed on the track.
1hs Amount of left context in milliseconds. As this is an absolute amount and the plot is
produced with normalised time, short segments appear longer than shorter segments.
rhs Similar to 1hs but for right context.
ymin The minimum track value to be plotted. All low values are plotted if ymin is not
specified.
ymax The minimum track value to be plotted. All high values are plotted if ymax is not
gpecified.
labx Character string for the x-axis.
laby Character string for the y-axis.
color Colour for the contour lines.

EXAMPLES
Plot contours of closure segments.
bathtub(closure, "ediffnls")
Show positive values of rate of change of ediffnls.
bathtub(closure, "ediffnls", difference=T, ymin=0.0)

below see above . below
cderr Cumulative Distribution cderr
cderr(x, y) ’
ARGUMENTS

x A set of values.
y Another set of values.

VALUE
A structure with two components. vals contains the values taken from x and y sorted
in order. err contains the cumulative discrimination corresponding to the elements in
vals.

EXAMPLES

cd « cderr(stopvals, nonstopvals)
plot(cd$vals, cd$err) {
. |

|

76 class § Function Documentation

class Which Elements Belong to a Set? class

class(x, set)

ARGUMENTS
x a vector.
set a vector,

VALUE
Returns a logical vector of the same length as x which is TRUE wherever the
corresponding element of x occurs in set.

SEE ALSO
match

EXAMPLES
labels < label(segs)
is.stop « class(labels, STOP) # Find the stops
segs(is.stop,] # Select the stop segments

cm Confusion Matrix cm

cm(actual, confusions, classes, total)

ARGUMENTS

actual What phonemes they were. These appear as the rows of the matrix.
confusions What phonemes they were thought to be. These are columns of the matrix.
classes Only consider this subset of phonemes. Default is the complete set from actual and
confusions,
total Are totals required at the ends of the rows and columns Default is T.

VALUE
A confusion matrix with labels suitable for printing with tprint.

SEE ALSO
tprint

EXAMPLES
hypotheses «— myPhonemeClassifier()
correctAnswers < getAnswers()
cm(correctAnswers, hypotheses)
cm

Confusions: m n ng FA Total

Actuals:
m 4 4 5 2 55
n 14 53 7 12 86
ng 0 2 14 1 17
FA 1 0 1 119 121

Total 59 59 27 134 279

S Function Documentation diac 77

confirm Prompt for Yes or No confirm

confirm(str)

ARGUMENTS
str character string prompt message.

VALUE
TRUE if user replied with "y" or "yes"; FALSE if "n" or "no". confirm insists on get-
ting one of these replies,
EXAMPLES
if(confirm("Do you really want to delete all your files?"))
remove(ls())
Dbdirs see Utterances Dbdirs
diac Diacritics diac
diac(segs, diacs="", offset=0)
isdiac(segs, diacs="", offset=0)
Diacritics
ARGUMENTS

segs APS segment list)
diacs Matching diacritics. This is a character string. Each character is matched against the
diacritics in the label file. A zero length string (the default) matches any diacritic.
offset specifies neibouring segments in the label files. A positive value selects right neigh-
bours (segments that follow in time): if offset is 1, then select the segment immediately
to the right; if offset is 2, then select the segment 2 positions to the right; etc. A nega-
tive value selects a left neighbour. The default, 0, selects the segment indicated,
unmodified.

VALUE
diacs returns the diacritic characters in the label file for the segments given by segs.
Diacritics are returned as a character string, one character for each diacritic (see
DIACRITICS below). Segments with no diacritics cause diacs to return zero length
strings.

isdiac returns TRUE or FALSE depending on whether any of the set of diacritics
given by the argument diacs occurs in the segment.

Diacritics is a dataset containing the table shown below.
DIACRITICS

These are the set of possible diacritics in CSTR label files. Only those marked with Y
in the Used column are used by ATR. This list is available in the dataset Diacritics.

78 diac S Function Documentation

Diacritic Used Meaning

Y Stop closure
Y Stop burst
Y Agpiration (includes any burst)
Devoicing
Voicing -
Retroflexion
Y Nasalisation
Lengthening
1 First portion of diphthong,
or first (stop) portion of affricate
2 Second portion of diphthong,
or second (fric) portion of affricate

—a

(S TS I =~ = o

’ Y Primary stress
" Y Secondary stress
= Y Syllabic
f Frication
[Dentalisation
w Labialisation
j Palatalisation
X Velarisation
? Glottalisation
* Syllable-boundary (on last phoneme of the syllable)
SEE ALSO
label, Diacritics
EXAMPLES
stops < phon(STOP)
diac(stops) # diacritics of all the stops

is.released « isdiac(stops,"h") # which stops are released

Diacritics see diac Diacritics
dur Duration of Speech Segments dur
dur(segs)
ARGUMENTS
segs An segment list.
VALUE
integer vector of segments’ end-times minus the segments’ start-times.
EXAMPLES

stop <« phon(STOP)
stem(dur(stop)) # Histogram of durations of all stops.

S Function Documentation eplot 79

end ' End Time of Segments end

end(segs)
end(segs) « values

ARGUMENTS
segs An APS segment list,

VALUE
The end time, in milliseconds from the start of the utterance, of all the segments in the
given segment list. This function is equivalent to segs|[,2].
The form end(segs) « values will set all the end times of segs to values.

SEE ALSO
start, utt, dur

EXAMPLES
Get the closure part of all the stops
stop < phon(stop)
burst < maxp(stop, "ediffnls", T)
closure « stop
end(stop) < burst

eplot Scatter Plots with Ellipses _ eplot

eplot(..., nsdev=1.96, dopoints=TRUE)

ARGUMENTS

.+« Any number of 2 columned matrices. Column 1 gives values for the x coordinate,
column 2 the y coordinate. Each matrix is considered as a separate population and ap-
pears with its own ellipse.

nsdev An integer specifying at how many standard deviations to plot the ellipse(s).
dopoints if TRUE, then plot the points, otherwise just plot the ellipse(s).

Plots a scatter plot with fitted ellipses.

EXAMPLES
eplot(idata)

Plot the ellipses only and at 2 timesis.d.
eplot(idata,idata2,idata3,nsdev=X,dop=F)

80 findex S Function Documentation

findex Index Segments From Frames findex

findex(segs, lhs =0, rhs =0, markseg=F)

ARGUMENTS
segs segment list.
lhs an integer number. Include this much left context from each token in milliseconds.
rhs as lhs but for right context.
markseg If TRUE then will add an NA after the frames for each segment. This is for compata-
bility with the related functions listed under SEE ALSO.

VALUE
Returns an integer vector with as many elements as there are frames for the segment
list. Each integer indexes the segment in the segment list associated with each frame.
SEE ALSO
frames, ftfrac, bathtub
EXAMPLES
Get frame values and labels at each frame.
fvalues « frames(stop,"ediffnls")
stop.labs « label(stop)
findx « findex(stop)
frame.labs < stop.labs[findx]
frames Get Values in Every Frame of Segments frames
frames(segs, trackname, difference=FALSE, lhs=0, rhs =0, markseg =FALSE)
ARGUMENTS

segs An APS segment list.
trackname character string specifying the track. Possible values are given by the function
tracks.
difference If TRUE then frames performs a first-difference on the values in the frames. Default
is FALSE - tracks are unmodified.
lhs an integer number. Include this much left context from each token in milliseconds.
rhs as lhs but for right context.
markseg If TRUE then will add an NA after the frames for each segment This is useful when _
drawing using lines.

VALUE
A floating point vector. Contains the value of the given track from every frame in the
segment list.

SEE ALSO
ftfrac, findex, bathtub

EXAMPLES
stop « phon(STOP)
f « frames(stop, "f1")

S Function Documentation ftfrac 81

Draw segment tracks on top of one another.
fvalues <« frames(stop,"ediffnls",,10,10,T)
ftimes « fifrac(stop,10,10,T)
plot(ftimes,fvalues,type ="n")
lines(ftimes,fvalues)

FRIC see Phonemes FRIC

fround Round Milliseconds to Nearest Frame fround

fround(times, frameshift = 5)

ARGUMENTS
times Vector of times in milliseconds.
frameshift Time interval between frames in milliseconds. Note that this value is NOT obtained
from the track files. If a frameshift is required other than the default of 5 milliseconds,
then the user must set it accordingly.

VALUE
Times rounded to nearest frame boundary time.

EXAMPLES
fround(end(segs)) # Get end times rounded to nearest frame.
fround(start(segs), 10) # Get start times rounded to nearest multiple

of 10 msecs.
ftfrac Times of Frames in Segments ftfrac

ftfrac(segs, Ths =0, rhs =0, markseg=FALSE)
ftimes(segs, lhs =0, rhs =0, markseg =FALSE, fromzero=TRUE)

ARGUMENTS

segs Segment list.
1hs an integer number. Include this much left context from each token in milliseconds.
rhs as lhs but for right context.
markseg If TRUE then will add an NA after the frames for each segment. This is useful when
drawing using lines,
fromzero (£times only) If set TRUE (the default) then frame times start at 0 for each segment. If
set FALSE then frame times are taken directly from the segment and measure time
from the start of the utterance.

VALUE
Returns a floating point vector representing the time at which each frame in the seg-
ment occurs,

ftimes returns the time measured in milliseconds for each frame. The argument
fromzero specifies whether time is to be measured from the start of the segment or

82 ftfrac S Function Documentation

from the start of the utterance.

ftfrac returns the time expressed as a fraction into the current segment. Values
range from 0.0 to 1.0.

These functions are useful in conjunction with frames for plotting curves of tracks in-
side segments. See example below,

SEE ALSO
frames, findex, bathtub

EXAMPLES
Draw segment tracks on top of one another.
fvalues « frames(stop,"ediffnls",,10,10,T)
ftimes « ftfrac(stop,10,10,T)
plot(ftimes,fvalues,type ="n")
lines(ftimes,fvalues)

ftimes see ftfrac ftimes
GLI see Phonemes GLI
hist2 Double Histogram From Two Sets . hist2

hist2(x, class)

ARGUMENTS
x Values for histograms.
class A logical vector of the same length as x. Elements in x are assigned to a histogram ac-
cording to whether the corresponding elements of class are TRUE or FALSE.

hist2 plots two histograms on top of each other,
EXAMPLES

hist2(stopduration, isvoiced) # Plot stop durations for voiced and
unvoiced stops.

indeces Indexes from Logical Vector indeces

indeces(x)

ARGUMENTS
x Logical vector

VALUE
returns indexes that correspond to TRUE elements of x.

S Function Documentation luniq 83

EXAMPLES
which « indeces(is.strange]

is.segs see segs is.segs
isdiac see diac isdiac
label Label Segments label

label(segs, offset=0)

ARGUMENTS
segs APS segment list.
offset allows neighbouring phonemes to be returned in preference to the matching phoneme.
A positive value selects a right neighbour: if offset is 1, then select the phoneme im-
mediately to the right; if offset is 2, then select the phoneme 2 positions to the right;
etc. A negative value selects a left neighbour. The default, 0, selects the matching

phoneme,
VALUE
Returns the phoneme in the label file found at each segment. Start and end times must
match exactly. See luniq if this is not suitable. Result is a character vector of
phoneme strings. The possible set of phonemes is found in the object called Phonemes.
EXAMPLES
stop « phon(STOP)
’ stoplist « label(stop) # identify the stops
Icontext < label(stop,-1) # identify the left context
rcontext « label(stop,1) # identify the right context
table(stoplist) # Produce a table of the phonemes
LIQ see Phonemes LIQ
luniqg _ Get Closest Matching Label luniq
luniq(segs, verbose =FALSE)
ARGUMENTS
segs APS segments to be labeled.
verbose logical. If there is a tie for the most overlapping segment, then the first segment is in-
dexed. This flag indicates whether a message is printed to warn the user of such an oc-
curance/

84 luniq

S Function Documentation

VALUE
A character vector of phoneme strings. The possible set of phonemes are found in the
object called Phonemes.
luniq matches the segment in the label file which has the greatest overlap. The
amount of overlap for each potential matching label is the fraction of the total extent of
the segment,
SEE ALSO
olap
EXAMPLES
clos < below("ediffnls",808.0)
lab « luniq(clos)
table(lab)
maxp Time of Extreme Values Inside Segments maxp
maxp(segs, trackname, difference=FALSE)
minp(segs, trackname, difference = FALSE)
ARGUMENTS
segs APS segments. See the function segs for a description.
trackname Character string specifying the track. Possible values aregiven by the function
tracks.
difference If TRUE perform a 1lst difference on the track values. Default is FALSE, the track is
unmodified.
VALUE
Returns the time inside each segment that correspond to the maximum (minimum)
value of the track. Values are in milliseconds measured from the start of the utterance
- not the start of the segment. Result is a vector with length the same as the number
of rows in segs. Missing values (NAs) indicate an error occured in reading the track
file.
SEE ALSO
Functions maxv and minv return respectively the actual values at the mazimum and
minumum points.
EXAMPLES

minp(segs,"zer") # returns time of minimum for track "zer"
maxp(segs,"ediffnls",T) # returns time of maximum rate-of-change in track "ediffnls"

S Function Documentation meanv 85

maxv Extreme Values Inside Segments maxv

maxv(segs, trackname, difference=FALSE)
minv(segs, trackname, difference = FALSE)

ARGUMENTS
segs APS segments. See the function segs for a description.
trackname Character string indicating the track to operate on. Possible values are given by the
function tracks.
difference If TRUE perform a lst difference on the track values. Default is FALSE, the track is

unmodified.

VALUE
Returns the maximum (minimum) value of the track inside each segment. Result is a
real vector with length the same as the number of rows in segs. Missing values (NAs)
indicate an error occured in reading the track file.

SEE ALSO
Functions maxp and minp return respectively the points in time where the maximum
and minumum occur in segments.

EXAMPLES
minv(segs,"zer") # returns for each segment the minimum value in track "zer"
maxv(segs,"hfd") # returns for each segment the maximum rate-of-change

in track "hfd"

meanv Mean/Median Value in Segments meanv
meanv(segs, trackname, difference =FALSE)
medianv(segs, trackname, difference=FALSE)

ARGUMENTS

segs APS segments. See the function segs for a description.
trackname character string indicating the track (acoustic parameter) on which to threshold. Possi-
ble values are given by the function tracks.
difference If T then perform a first difference on the values in the track. Deafult is F - tracks

unmoedified.

VALUE _
Returns the mean (median) of the frames in each segment. Result is a real vector with _
length the same as the number of rows in segs. Missing values (NAs) indicate an er-
ror occured in reading the track file or, in the case of medianv allocating memory for
sorting the data prior to finding the median.

SEE ALSO
maxv, maxp

EXAMPLES

meanv(segs,"fl") # returns the mean for given segments in track "f1"

86 meanv 'S Function Documentation

medianv(segs,"f2") # returns the median for given segments on track "f2"

medianv see meanv medianv
META see Phonemes META
midslice Extract Middle Portion of Segments midslice

midslice(segs, fraction)

ARGUMENTS
segs Segment list.
fraction A number between 0.0 and 1.0, the fraction of the segment.

VALUE v
A segment list that is the middle part of the segments in segs.

EXAMPLES
midslice(phon(NAS), 0.5) # Nasals with the 1st and last quarters removed.

mincderr Minimum Cumulative Discrimination Error mincderr

mincderr(x, y)

ARGUMENTS
x One set of values.
y Another set of values.

VALUE
Returns the value at which the cumulative discrimination error is at minumum.

SEE ALSO
cderr

EXAMPLES
midcderr(stopvals, nonstopvals) # Minumum error for stop vs. non-stops.

S Function Documentation mplot 87

minp see maxp minp

minv see maxv _ minv

mkdb Set Up Utterances From a Database mkdb
mkdb(directory="", extn="syl", fc="s")

ARGUMENTS
directory character string of directory where data files are to be found. If this argument not
given then files are searched for in the current directory,.
extn character string giving the filename extension for matching files that define the data-
base.
fc character string indicating the method of filename construction. Two methods are reco-
gised: Standard indicated by "s" (the default, and Olivetti indicated by "o". See the
APS User Guide for an explaination of filename construction.

mkdb creates Utterances, the data object used by APS functions to interprete a seg-
ment list (see segs),

SEE ALSO
Utterances, segs

EXAMPLES)
Create Utterances from all files with extension ".syl"
in the current directory

mkdb()

Create Utterances according to ".trk" files in /u2/sip/gsw/data
mkdb("/u2/sip/gsw/data", ".trk")

Create Utterances using Olivetti filename construction
mkdb("/DB/corpus”, ".lab", "o")

mplot Plot Many Histograms By Phoneme Class mplot

mplot(x, labs, classes =Phonemes$names[class(Phonemes$names, uniq(labs))])

ARGUMENTS
x a numeric vector of values.
labs a character vector of phoneme labels corresponding to x.
classes the uniq set of labels to plot. The default set are all of the labels given by labs in the
order they occur in Phonemes$names so that each class of phoneme, such as all the
stops, appear together.

This function will plot many histograms together. It is useful for comparing distribu-
tions of some values for different classes of phoneme.

88 mplot $ Function Documentation

EXAMPLES
all < phon() # Get all phonemes from the database
mplot(dur(all), label(all)) # Compare duration distributions
mrpa ' Obsolete mrpa

mrpa is now called phon. See help for phon.

NAS see Phonemes NAS _

phon Make Segments From Phoneme Label Files phon

phon(phonemes ="*", offset=0)

ARGUMENTS

phonemes character vector describing the phonemes required for collection. The default is
which matches all phonemes and is therfore equivalent to phon(Phonemes$names).

offset allows neighbouring phonemes to be returned in preference to the matching phoneme.

A positive value selects a right neighbour (the phoneme that follows in time): if offset is
1, then select the phoneme immediately to the right; if offset is 2, then select the
phoneme 2 positions to the right; etc. A negative value selects a left neighbour. The
default, 0, selects the matching phoneme.

[

VALUE :
An APS segment list corresponding to the phonemes in the label files.
Segments may be restricted to those whose label matches one of the strings given by
the argument phonemes (see examples). For convinience there exist data objects such
as STOP, VOW which index the more common phoneme classes. These sets may be con-
catinated, as in SON « c(VOW, NAS, LIQ, GLI), and/or created from strings, as in
NASw « ¢c("m","n","ng","w"). The data object Phonemes contains the set of all the
phonemes stored in the label files.

SEE ALSO
label

EXAMPLES
phon() # get all phonemes
phon(STOP) # get all stops
phon(STOP, +1) # get segments following all the stops

phoh(c("p","t","k")) # get all voiceless stops
phon(¢("s","sh")) - # get all /s/ and /sh/

S Function Documentation samplev 89

Phonemes The Set of Possible Phonemes Phonemes

Phonemes has the following attributes:
names the character strings that occur in the label files. These are the possible strings re-
turned by the functions label, lunigq, etc.
freq the frequency with which the phonemes occur in a lexical corpus.

The following datasets contain useful subsets of Phonemes$names,

Dataset Phoneme Set

VOW Vowels

STOP Stops

FRIC Fricatives

NAS Nasals

LiQ Liquids

GLI Glides

META Special set of annotations:
- pause
. - NOT ALLOCATED
. - NOT ALLOCATED
* - NOT ALLOCATED
< - before start of utterance
> - after end of utterance

FA - false alarm

SOURCE
Phoneme frequencies were collected by M. Cooper from [XXX]

samplev Sample Track Values samplev

samplev(segs, trackname, points=c(0, 0.5, 1), smooth=TRUE)

ARGUMENTS
segs a segment list
trackname name of track to sample

points points within segments to sample. These are expressed as a fraction of the duration of
the segment. The default - 0.0, 0.5 and 1.0 - returns the values at the start, middle and
end of the segments.

smooth if TRUE, then does a Gaussian smoothing on the frame values. After smoothing the
frame value for frame number N is equal to

0.26*value(N-1) + 0.5*value(N) + 0.25*%value(N+1)

VALUE
A matrix of values from the track. The matrix has as many rows as there are segments
and as many columns as the length of points. The values are read from the track file
at the point in time given by segs and points.

EXAMPLES

Sample F1 at the start, the middle and the end of vowels.
vowels « phon(VOW)

90 samplev S Function Documentation

fl « samplev(vowels,"f1")

segs Segment Lists segs

segs(start=rep(0,length), end =rep(0,length), utt=rep(0,length), length =0)
as.segs(x)
is.segs(x)

ARGUMENTS
start integer vector of start times from the beginning of the utterance in milliseconds.
end like start but for the end times.
utt utterance names, a character vector that identifies the utterance as a filename without
an extension. This is a copy of the appropriate element of the dataset Utterances.
length in the absence of the other arguments this gives the number of segments to initialise.

VALUE
segs returns an APS segment list. Its format is recognised by all APS functions as the
means of describing segments of speech.
An APS segment list is an integer matrix where each row represents one segment. The
first column, named "start", is the start time in milliseconds counted from the start of
the utterance; the second column, named "end", is the end time in milliseconds. The
third column, names "utt", is references the utterance as the filename without its ex-
tension. This is a copy of an element in the specially named dataset Utterances;
The function segs creates a segment list according to the values given in the argu-
ments start, end and utt. If the only argument given is length, segs will create a
segment list of length segments with all elements set to zero.
is.segs returns TRUE if x is a segment list and returns FALSE otherwise.
as.segs returns x as a segment list. x is treated as a vector, start times come first, fol-
lowed by end times and then utts.

SEE ALSQ
phon

EXAMPLES
Create 5 msec segments from time instants.
burst.segs « segs(burst.time, burst.time + 5, utt(stop))

segsort Sort a Segment List segsort

segsort(segs)

ARGUMENTS

segs Segment list.

VALUE
The same segments sorted in the following order: firstly by utterance id, secondly by

$ Function Documentation slen 91

start time, thirdly by end time. This is the standard order for segment lists returned
by functions like phon, above and below.

SEE ALSO
seqgorder

EXAMPLES
weakFrics « findwfrics() # Get weak fricatives
strongFrics « findsfrics() # Get strong fricatives

frics « segsort(¢(weakFrics, strongFrics)} # Join them together

shift Ajust Segment Times shift

shift(segs, startshift =0, endshift=0)

ARGUMENTS
segs Segments to be shifted.
startshift An integer which indicates how many milliseconds to shift the start-time of segments.
Negative values shift earlier, positive values later.
endshift As startshift, but ajusts the end-time.

VALUE
Result is a new segment dataset with start and end times altered.

EXAMPLES
shift(segs,-5,-5) # Return segments 5 msecs earlier
shift(segs,0,10) # Move all end-time 10 msecs later

slen Number of Segments in Segment List slen

slen(segs)

ARGUMENTS
segs An APS segment list.

VALUE
The number of segments in the segment list.

EXAMPLES
slen(phon(NAS)) # How many nasals in the database?

92 slice § Function Documentation

slice Chop Segments into Equal Pieces slice

glice(segs, npieces)

ARGUMENTS
segs An APS segment list.
npieces Split segments into this many pieces.

Creates as many datasets as specified by npieces. Each new dataset has a name of

the form segs.N, where segs is the name of the argument segs and N is a number from
1 to npieces.

EXAMPLES
slice(clos, 3) # Makes three files, clos.l, clos.2 and clos.3
for the each third part of clos.
splitdb Split a Database into Sets splitdb
splitdb(n)
ARGUMENTS

n an integer. How many pieces to make.

Creates n new datasets named USet.1, USet.2, ..., USet.N each of which is a subset of
Utterances. The members of Utterances are distributed on a round-robin basis. For
example, if n is 3 then USet.1 will contain elements 1, 4, 7, ..., of Utterances, USet.2
elements 2, 5, 8, ..., and USet.3 elements 3, 6, 9, ...

EXAMPLES
splitdb(3)

start Start time of Segments start

start(segs)
start(segs) « values

ARGUMENTS
segs An APS segment list.

VALUE

The start time, in milliseconds from the start of the utterance, of all the segments in
the given segment list. This function is equivalent to segs{,1].

The form start(segs) « values will set all the start times of segs to values.

S Function Documentation tracks 93

SEE ALSO
end, utt, dur
EXAMPLES
Get the closure part of all the stops
stop < phon(stop)
burst < maxp(stop, "ediffnls", T)
closure < cbind(start(stop), burst, utt(stop))
STOP see Phonemes ‘ STOP
tracks Track Names tracks
tracks(utterance = Utterances[l], duplicates = FALSE)
ARGUMENTS
utterance Utterance from which tracks are to be read. This is a character string in the same for-
mat as Utterances. _
duplicates When there is more than one track file for the utterance, it is possible that tracks are
duplicated. If duplicates is TRUE, then return all the track names regardless wheth-
er they duplicated or not. Note, however, that APS only ever reads the first track that
matches a trackname. If duplicates is FALSE, the default, then duplicates are re-
moved.
VALUE . |
vector of character strings containing the track names in the track file. Normally
tracks is called with no argument causing it to return those tracks available in the
current default database, ’ o
A call with no argument causes tracks to read the track names from the first utter-
ances in Utterances. All APS functions consider the first utterance as defining the set
of tracks in all the remaining utterances.
EXAMPLES

List the available tracks.
tracks()

Store track names from given track file.
mytracks « tracks("/u2/sip/gsw/data/jl10s")

96 Utterances S Function Documentation

EXAMPLES
How many utterances are there?
length(Utterances)

Reduce working database to the first 98 utterances
Utterances « Utterances[1:98]
all « phon() # ... and get all the phonemes there.

Utterances passed as an argument
stops < phon(STOP,u="denjlsb045")
labs « label(stops)

Utterances.db see Utterances Utterances.db
VOW see Phonemes VOW
wmrpa Write Out AUDLAB MRPA Label Files . wmrpa

wmrpa(segs, labels = label(segs), desc="S output”, dir=".", extn=".mrp")

ARGUMENTS
segs Standard APS segment list.
labels Character string indicating the labels which correspond to the segs list.
desc A quoted character string which is stored in the MRPA fileheader field descr (max
length is 16 characters).
dir The UNIX directory in which to write the files.
extn The extension to give to the filenames.

This function writes out a set of MRPA label files using data stored in S lists. Each
output file takes its name (without any path information) from utt in the segment list
and has the extension ".mrp" attached to it. The output directory path may be set by
the argument dir or the environmental varible WMDIR; the current directory is the
default.

SEE ALSO
phon

EXAMPLES
wmrpa(detected.segs,matched.labs,"BC_NASALS")

S Function Documentation wsegs 97

wsegs Write Segment Files for Lisp wsegs

wsegs(segs, labels = label(segs), dir=".", extn=".seg")

ARGUMENTS
segs APS segment list.
labels character strings of labels corresponding to the segments. This is obtained via label
by default. If only one string is given, then this is used for all segments.
dir directory in which to write files.
extn extension for filenames.

wsegs writes segments out to files in a form accepted by Lisp.
A segment appears as a line in the apprdpriate file of the form

(<start-time> <end-time> <label>)
The form of each filename is

dir/ <stem-of-utterance-name>extn

EXAMPLES
wsegs(clos, dir="../segs™)

