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Abstract

A new approach for intonation stylization is introduced, that enables the extraction of an intona-
tion representation from prosodically unlabeled data. This approach yields global and local in-
tonation contour classes arising from a contour-based, parametric and superpositional intonation
stylization. Based on findings about the linguistic interpretation of the contour classes derived
from corpus statistics and perception experiments, we created simple prediction models for the
partial generation of intonation contours from discourse structure defined by discourse segment
boundaries and the information status of nouns within these segments. The predicted intonation
contours were evaluated by human judgments of adequacy that yielded a high accordance.

Keywords: computational intonation stylization, data-driven, contour-based, superposition,
discourse structure

1. Introduction

1.1. Dichotomies of intonation models

Established intonation models can be classified along three dimensions:

1. the chosen units: tone targets vs. contours,
2. their description: symbolic vs. parametric, and
3. their arrangement: single-layered vs. superpositional.

In the following, a selection of high impact intonation models will be described with re-
spect to these dichotomies. The tone sequence model (TSM) of [1, 2, 3] can be characterized as
target-based, symbolic and single-layered, since fundamental frequency (F0) within an intona-
tion phrase is described as a single-layered sequence of tone symbols that are assigned to pitch
accented and phrase boundary syllables. The PENTA model, conceptually introduced in [4] and
quantified in the form of the qTA model by [5], also considers the F0 contour as a sequence of
targets that are static (horizontal) or dynamic (rising or falling) and are assigned to each syllable.
While in the TSM the F0 contour generally results from connecting the targets by an interpola-
tion function, PENTA considers the F0 contour as a result of target approximation which can be
realized in different forms such as a third-order critically-damped linear system as in [5]. The
PENTA model thus is target-based, parametric, and arranges intonation units in a single layer.
The Fujisaki model [6, 7, 8], in every respect opposite to the TSM, is contour-based, parametric,
and superpositional. It considers F0 as a superposition of a global phrase component related to
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declination and a local accent component related to F0 movements on accented and phrase-final
syllables. The components are parametrically represented as critically damped systems activated
by phrase and accent commands, respectively. The TILT model [9] as well as the PaintE model
[10] yield a contour-based, parametric and single-layered intonation representation. They pro-
vide a parameterization of the F0 contour in the scope of accented and phrase-final syllables.

1.2. Model requirements
Ideally, intonation models should allow for:

1. an appropriate abstraction from the signal,
2. the interpretability of the abstraction, and
3. its automation.

In the following sections the models presented thus far are discussed with respect to these
requirements.

1.2.1. Signal abstraction
An appropriate abstraction from the signal means to capture relevant aspects of the signal, to

allow for signal reproducibility, and to be reproducible itself if repeated on the same signal.

Relevant signal aspects. Tone-based approaches yield a comparably high degree of abstraction
but hence have to face the criticism to neglect relevant properties of the F0 contour between
tone targets due to underspecification. For example, they cannot account for the shape between
the prenuclear and nuclear tone accents in Neapolitan being concave in questions and linear in
statements [11]. So far two major proposals to face this issue had been made: the insertion of
intervening targets [11] and the usage of interpolation rules [12]. Since tones are associated
to accented and phrase boundary syllables only, additional targets require a reorganisation of
the prosodic structure which needs justification. This reorganisation can for example consist
in the insertion of an additional prosodic level of accentual phrases as in [11]. The usage of
interpolation rules raises the question why not to work directly with contours instead of tones.

Dainora [13] argues for a contour approach due to the high predictability of tones given their
predecessors indicating that the relevant intonation unit is not the tone but a tone sequence and
thus a contour. Further support for this perspective is given by [14] who found for German dialog
data that contours are more appropriate than tones to reveal the underlying intonation systematics
for turn holding and turn yielding.

Signal reproducibility. Since parametric models are inherently more closely related to the signal,
they are more appropriate for signal reproduction from the abstract intonation representation.
While a parametric representation can be transformed directly into the F0 contour by parameter
assignment as in an analysis-by-synthesis framework, symbolic approaches depend on additional
mediation which may be hand-crafted rule-based [15] or data-driven [16].

Abstraction reproducibility. Symbolic approaches relying on manual labeling have to face the
risk of low intra- and inter-labeler agreement. A common proposal to address this issue of low
abstraction reproducibility is to reduce the size of the label inventory [17, 18].

Established approaches do not guarantee the reproducibility of the abstraction either, since
the parameters for the chosen stylization functions are not derivable analytically but have to be
estimated numerically by local optimization of the fit between representation and original contour
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[8, 19]. Thus the abstraction depends strongly on the parameter value initialization. Furthermore,
the relation between the parameter values and the F0 contour is usually not biunique, i.e. different
parameter assignments can lead to the same contour (see [20] p. 60 for an example).

1.2.2. Interpretability
Linguistic interpretability. Empirical findings suggest that linguistic phenomena show categor-
ical as well as gradual correspondence in the production and perception of intonation. For ex-
ample, [21] found that the realizations of broad vs. narrow focus show categorical differences in
terms of different pitch accent types as well as gradual differences in F0 alignment and segment
durations. Therefore, both symbolic and parametric intonation representations are principally
accessible for linguistic interpretation, which is discussed in depth by [22]. [23] can be referred
to for the linguistic interpretation of symbolic approaches, and [7, 8] for the interpretation of
parametric models.

To make use of possible advantages of more intuitive linguistic interpretations on the symbol
level, approaches transforming parametrical transcriptions into symbolic ones might be helpful.
The PaintE model for example offers an additional symbolic F0 representation by means of
parameter vector clustering [24].

Phonetic interpretability. A superpositional arrangement of intonation units as in the Fujisaki
model can account for long-term phenomena like declination. Furthermore, it offers the possibil-
ity to incorporate findings of pre-planning in intonation production [25], amongst others reflected
by the relation between utterance length and declination slope.

1.2.3. Automation
Automation is highly desirable if a model is to be tested on a larger amount of data. Fur-

thermore, it allows for fast applicability to new data of other languages. In contrast, manual
adaptations of symbolic label inventories like ToBI [26] for other languages [27] are very labo-
rious.

As said above in the context of signal reproducibility, the advantage of a parametric unit
description is its direct linking to the signal. While symbolic representations need experts or
additional modules to derive symbols from the signal [28] or to generate F0 contours [16], pa-
rameters can be directly inferred from and transformed into F0 values.

1.3. Discourse structure

[29] proposed three parallel discourse structures: The linguistic structure is given by the
written or spoken text, the attentional structure represents the relative salience of discourse en-
tities, and the intentional structure subdivides the discourse into segments of coherent speaker
intentions. The linguistic concepts into which we attempt to embed our intonation stylization
are discourse segmentation and the information status of words within these segments. These
concepts can be linked to the intentional and the attentional structure, respectively.

1.3.1. Discourse segmentation
Discourse segmentation serves to group together coherent parts of an utterance. One way

to address coherence consists in a linear discourse segmentation into subtopic units [30]. Con-
cerning the intonational marking of discourse segmentation it has been found in production and
perception studies for several languages that subtopics generally start with a higher F0 register
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and end in a lower register [31, 32, 33], so that pitch reset is more pronounced at topic shifts
[31]. The strength of coherence of adjacent discourse segments is prosodically encoded amongst
others by boundary tones [23, 34], and the degree of final lowering [35]. High boundary tones
generally mark continuation and thus a high degree of cohesion of adjacent discourse segments,
while low boundary tones and final lowering indicate low coherence. A more extensive overview
on intonation in discourse segmentation is given by [36].

1.3.2. Information status
The information status of a discourse entity describes whether it contains new information,

which is not yet present in the discourse context, or given information, that is already avail-
able. [37] proposes a major categorical division of givenness into evoked (already mentioned
or directly available as part of the dialog situation) and inferable (only accessible via an evoked
entity). [38] distinguishes between different activation levels of discourse entities on an ordinal
scale: given (active), accessible (semi-active), and new (inactive). A more detailed six-level scale
is given by [39].

Numerous studies mainly within the TSM framework have revealed how information status
is expressed by means of intonation. Different pitch accent type preferences (including deac-
centuation) have been identified for given and new information for several languages as English
[40, 23] and German [34, 41]. [35] and [42] relate these findings to the attentional structure
of [29] by expressing given and new in terms of different degrees of salience. The intonational
marking of different degrees of givenness is explored e.g. by [23, 43] who found amongst others
degree-dependent pitch accent type preferences.

The aim of this study is to link our approach to simplified forms of the introduced discourse
concepts. The approach was originally developed and presented in [20, 44] (in the first source it
is referred to as the PKS stylization) and is based on the considerations formulated in Section 1.2.
It will be described in Section 2. In Section 3 our previous work on its linguistic interpretation
with respect to discourse is summarized. Based on these findings in the current study simple
prediction models for global and local contour classes were handcrafted, which are introduced
in Section 4 together with their perceptual evaluation.

The results are discussed in Section 5 with a focus on the relevance of our approach concern-
ing adequate intonation representation for linguistic interpretation.

2. The CoPaSul intonation approach

2.1. General description

Our CoPaSul approach provides a contour-based (Co), parametric (Pa), and superpositional
(Sul) F0 representation. F0 contours are treated as a superposition of global and local compo-
nents. These components are anchored in a hierarchical prosodic structure defined by global
and local segments which roughly correspond to intonation phrases and potential accent groups,
respectively, where ‘potential’ means that the allowed number of accented syllables within such
a group is zero or one. The stylization of the F0 contours is carried out as follows: Within each
global segment a linear F0 base contour is fitted. After the subtraction of this global baseline
within each local segment a third order polynomial is fitted to the F0 residual. Subsequently, a
symbolic description of the intonation inventory in the form of global and local contour classes
is derived by polynomial coefficient clustering. On the phonetic level, linear regression models
adjust these abstract units to the respective prosodic context.
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CoPaSul thus stands in the tradition of parametric (Fujisaki, PaintE, PENTA, Tilt) and super-
positional (Fujisaki) models. Like the Fujisaki model it explicitly distinguishes between a global
and a local intonation component and thus allows for addressing them separately. Its paramet-
ric and contour-based nature closely connects the stylization to the signal level. Furthermore,
parameter clustering has been adopted from the PaintE approach yielding a symbolic intonation
representation that allows for linking the stylization to the linguistic level.

2.2. Data and preprocessing

The training data originates from the SI1000P corpus [45] containing 190 minutes of German
read speech by a professional standard German male newsreader. F0 contours were extracted by
the Schaefer-Vincent algorithm [46] and transformed to semitones (base 50 Hz). F0 errors and
voiceless segments were bridged by a shape-preserving piecewise cubic Hermite spline interpo-
lation [47]. The contours were smoothed by a Savitzky-Golay filter [48] of order 3 and window
length 5. A main advantage of this filter type over other standard smoothing methods like moving
average is that it is only a little prone to temporal shifts of local peaks and valleys and therefore
better preserves the F0 envelope.

Pauses and syllable nuclei were detected automatically by energy (root mean squared de-
viation; RMS) comparison between an analysis window wa and a longer reference window wr

with the same time midpoint. For pause assignment the energy in wa had to be considerably
lower than in wr, more precisely RMS (wa) < RMS (wr) · 0.06. The length of wr was set to
5 s, the length of wa to 150 ms in order to prevent the confusion of pauses and shorter stop
consonant closures. For syllable nucleus assignment the energy in the relevant frequency range
from 245 to 3125 Hz had to be considerably higher in wa than in wr, and additionally had to
surpass a threshold which was defined relative to the maximum energy of the utterance, i.e.
RMS (wa) > 0.15 ·max(RMS )∧RMS (wa) > RMS (wr) ·1.2. Here, the lengths of wa and wr were
set to 50 and 250 ms, respectively.

All length, factor, bandwidth, and threshold parameters were estimated by the non-linear
Nelder-Mead Simplex optimization [49] on a SI1000P subcorpus comprising 20 hand-segmented
sentences with 1011 syllables and 86 speech pauses. The error for pause detection in terms
of insertions and deletions in non-final position amounts 10%, the error for syllable nucleus
detection 7%. These error rates are regarded as not too severe: First, in our read speech data
every punctuation mark co-occurred with a speech pause, so that a global segment boundary
was set even if pause detection failed. Second, almost all nucleus detection errors occurred in
low prominence function words which are expected to be of minor relevance for determining
intonation events. Details of the optimization and the evaluation are described in [20].

On the text level, part of speech tagging was carried out by a tagger described in [50]. Sig-
nal and text were aligned by the Munich Automatic Segmentation System (MAUS) [45], and a
grapheme-phoneme converter [51] served to locate the word-stressed syllables within this align-
ment.

2.3. F0 analysis

2.3.1. Prosodic structure
The segmentation into global and local segments was carried out automatically based on the

preceding alignment of the signal and the tagged text and on pause detection. Global intonation
segments are delimited by speech pauses and by punctuation. Local intonation segments were
defined as a chunk of function words terminated by a content word or a global segment boundary.
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This notion roughly corresponds to chunking approaches as those given in [52, 53] and ensures
in most cases that each local segment contains one accented syllable as a maximum. As an ex-
ample, the utterance illustrated in Figure 1 Die Tiere verstummen, ein Unheil naht. (The animals
hush, a disaster is approaching.) is divided into global segments at punctuation marks, and each
global segment is further divided into local segments by placing a boundary behind each content
word yielding the following structure: [[Die Tiere] [verstummen]], [[ein Unheil] [naht]] ([[The
animals] [hush]], [[a disaster] [is approaching]]).

2.3.2. F0 stylization
All stylizations are based on the F0 values in 110 ms frames centered on the detected syllable

nuclei. The advantage of this approach is that its demands on preprocessing are low. It requires
only a syllable nucleus detection, which is robust and can be carried out automatically. There is
no need for an exact syllable segmentation or for a weighting of more and less important parts
of the F0 contour. Thus, ad-hoc approaches like intensity-based weighting [54] are dispensable.
The choice of a frame length of 110 ms is a trade-off between the need of enough input data for
reliable polynomial fitting and the need to avoid frame overlaps of consecutive syllables. If an
overlap still occurs, neighboring frames are shortened by an equal amount.

Global and local contour stylizations that will be described in the next paragraphs are shown
in Figures 2 and 3.

Global contours. Within each global intonation segment, a declination baseline is derived as
follows: For each syllable nucleus window the F0 minimum is taken as an F0 base level. The
baseline then is adjusted as the flattest bottom tangent of the sequence of these base level values
that passes through two points of the sequence chosen from all linear connections of pairs of F0
minima [20]. In order to make baseline slopes comparable across different segment lengths, time
is normalized to the interval from 0 to 1. This baseline is then subtracted from the F0 contours,
and its slope is recorded for subsequent clustering (see Section 2.3.3).

Local contours. Within each local segment a third-order polynomial is fitted to the time-normalized
residuum contour. As illustrated in Figure 3 time is normalized as follows: The time span of the
local segment is set from -1 to 1. -1 is assigned to the left boundary of the first syllable nucleus
window, and 1 to the right boundary of the last syllable nucleus window. 0 is placed on the
nucleus of the syllable of the segment-final word (the content word), that carries the word stress.
Thus, the peak of the F0 contour can be interpreted relative to the accent position. This approach
requires separate normalizations of the pre- and post-accent parts of the local segment. By means
of normalization it is possible to compare utterance segments of different lengths. Furthermore,
it allows to ignore unstable polynomial behavior outside the chosen interval it is fitted to. On the
other hand, this normalization obscures the influence of phonetic segment durations and sylla-
ble number on peak alignment (see [55] for an overview). However, due to the high number of
different phonetic segmental contexts, this influence is considered as noise that overall does not
affect the analysis in a systematic way.

The selected polynomial order is motivated by the trade-off between capturing relevant F0
movements and avoiding data overfitting. First and second order polynomials are not powerful
enough to cover all relevant aspects of local F0 contours. Polynomials of fourth or higher order
run the risk not to be well-conditioned and to complicate subsequent clustering, since they de-
mand a larger amount of data due to the increased coefficient vector length, as well as a weighting
schema for more and less relevant coefficients. In any case, the danger of oversimplification by
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third-order polynomials is diminished by the specification that a local segment contains at most
one pitch accent, which limits the expected complexity of the F0 contour.

2.3.3. Contour classes
Contour classes were derived by k-means clustering of the range-normalized coefficients.

For global classes the baseline slope values and for local classes the polynomial coefficient vec-
tors were clustered with respect to their squared Euclidean distances. Cluster initialization was
carried out by subtractive clustering [56] that iteratively locates initial centers in the parameter
space at regions with high data density. The parameters for subtractive clustering were derived
by Nelder-Mead Simplex optimization. Details on the application of this procedure are given in
Appendix A.

Figure 4 shows the centroids of the resulting three global and five local contour classes g1 to
g3 and c1 to c5, respectively. The centroid coefficient values are listed in Appendix A. In Figure 1
intonation within the two global segments is illustrated as the superposition of the global contour
class sequence g2, g2 and the local class sequence c2, c4, c5, c1.

The chosen squared Euclidean distance measure is not primarily perceptually motivated,
since reliable perceptually grounded distance measures are not yet available (although attempts
were made to develop such metrics, e.g. [54, 57]), but it is in line with the general bottom-up
character of the current approach. In [57] the Euclidean distance turned out to correspond slightly
better to perceptual distance judgments than other metrics.

The cluster center initialization by means of subtractive clustering guarantees stable results
across disjunct data subsets and input vector randomization. The number of clusters was constant
over all subsets and randomizations. All pairwise correlations of corresponding centroids are
above 0.97 for the data subsets and above 0.99 for data randomization.

2.3.4. Phonetic realization
The phonetic realization of the contour classes on the basis of linear regression models is

illustrated in Figure 5. The regression models serve to map the abstract contour class centroids
to the intonation surface level.

Contour realizations. In order to constrain the deviance of a contour realization from the un-
derlying class, the regression models for global and local contour realizations predict absolute
values for the polynomial coefficients. The algebraic sign is taken over from the underlying
centroid coefficient.

The linear regression model for the slope realizations |br | of global contours is given by
|br | = w0 + w1 · |bc| + w2 · |brp| + w3 · l. This means that the absolute slope realization |br | of a
global contour is derived from the underlying absolute centroid slope |bc| of the contour class,
the realized slope of the preceding contour |brp|, and the length of the current global segment l.
wi are the predictor weights, which were calculated by minimizing the overall error between |br |

and absolute values of the observed baseline slopes obtained from the stylization. For weight
calculation the realized slope of the preceding contour brp was set to the value of the respective
stylization coefficient. In application contour slopes are estimated sequentially from left to right,
so that brp is given by the output of the regression model for the preceding global contour.

For each local contour coefficient a separate linear regression model was trained: |ar | =

w0 + w1 · |ac| + w2 · |arp| + w3 · |br | + w4 · p. The absolute value of the contour coefficient
realization |ar | is predicted from its underlying contour class coefficient |ac|, the realized value of
the preceding corresponding coefficient |arp| the realized slope of the current global contour |br |,
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and the relative position p of the local segment within the global segment. The predictor weights
are calculated by minimizing the overall error between |ar | and the corresponding value obtained
from the stylization.

Pitch reset. At junctions between global segments the pitch reset r is modeled by r = w0 +

w1 · br1 + w2 · br2 + w3 · pl. br1 and br2 are the realized slopes of the adjacent global contours.
Their absolute values have been predicted by the global contour model introduced above. pl is
the length of the interjacent pause. The predicted pitch reset is added to the final F0 value of the
preceding global contour in order to derive the F0 starting level of the current global contour. The
predictor weights are calculated by minimizing the overall error between r and the corresponding
observed pitch reset values.

For all linear regression models, the predictors are range-normalized. The resulting regres-
sion weights are shown in Table A.4 in Appendix A along with the correlations between predic-
tions and targets that range between 0.63 and 0.82.

Gain from the realization models. The regression models serve to set the concrete realization
of a contour class in the context of extrinsic influence factors. By this it can be accounted for
the negative correlation of global segment length (predictor l) and global contour slope [25]. As
can be seen in Appendix A, Table A.4, this reverse relation is captured by the negative contour
length weight w3 = −0.0221.

An implicit F0 topline [58] can be modeled by relating the local contour coefficients to the
relative position of the contour (predictor p) within the global segment. Accordingly, the corre-
sponding regression weights w4 turned out to be negative for all local contour coefficients. Thus,
the more a local contour is located to the end of a global segment, the lower its height, and the
less pronounced its steepness and shape. Moreover, the regression models serve to smooth con-
tour sequences, since contour parameters are calculated not only from the underlying centroids
but also from the correspondent coefficients of the preceding contour.

The pitch reset model accounts for the co-operation of pitch reset [59] and pause length [60]
in encoding prosodic boundary strength. This positive impact of pause length on the pitch reset
is reflected by the positive value of w3 = 0.2166 shown in Table A.4. In principle, the pitch
reset model could be extended by a predictor representing the presence or absence of a discourse
segment boundary in order to incorporate the findings of [31] (cf. section 1.3.1). However, this
is not yet possible on the basis of the given training data since each sentence was produced in
isolation so that pitch reset could not been measured across topic shifts.

Local segment junctions. Depending on the distance between the two syllable nuclei adjacent to
a segment boundary a contour gap (as in Figure 5) or overlap occurs. Both are bridged by linear
interpolation. Start and endpoint of this linear bridge are smoothed by a moving median filter.

3. Previous work on automatic linguistic anchoring of the CoPaSul stylization

The text-based local contour class prediction suggested in the current study (see Section 4)
integrates the findings of two previous perception experiments [44, 61] that will be reviewed in
the following.
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3.1. Linguistic concepts

We had tested the linguistic adequacy of the local contour classes with respect to semantic
weight [44] (defined in terms of word predictability [62]), utterance finality [44], and information
status [61]. Due to strong correlations between the contour classes’ relations to semantic weight
and information status and the inherent correlations of these two concepts [20], only the two dis-
course structure concepts discourse segmentation and information status are further considered
in this study. For these initial attempts to relate the data-driven approach to discourse structure,
terminology was strongly simplified: First, we reduced information status to the dichotomy given
vs. new information not further distinguishing between different levels of givenness. Second, we
considered discourse segments to be subtopics in a linear sequential order as in [30] leaving aside
hierarchical discourse structures or more sophisticated discourse coherence analyses reflecting
its intentional structure. Third, we set equal utterance and discourse segment boundaries based
on the assumption that the intonation of declarative utterance ends is accepted as a marker of
potential discourse segment ends, due to their common coincidence.

3.2. General Method

The general procedure to link the intonation stylization to linguistic units can be described as
follows: First, linguistic concepts were extracted by means of simple sentence segmentation and
natural language processing (NLP) methods. Then, based on co-occurrence statistics between
the linguistic events and the contour classes, hypotheses were formulated about the linguistic
function of the classes. For global classes these hypotheses concern discourse segmentation,
for local classes discourse segmentation and information status are covered. For the local classes
these hypotheses were subsequently tested by perception experiments. 24 German mother tongue
subjects between 22 and 47 years took part in these experiments. All subjects were students or
scientists of phonetics in Munich.

3.3. Discourse Segmentation

From the studies referred to in section 1.3.1 it can be concluded that in intonation segment
finality is encoded on a local level by means of boundary tones [23, 34] and on a global level
by means of F0 register [31, 32, 33]. Segment starts are predominantly marked on the global
level in terms of F0 register [31, 32]. Therefore, we examined the function of local contour
classes in segment final position only, with the aim to classify them by the dichotomy final vs.
non-final (continuation). The function of global contour classes was examined in segment final
and additionally in initial position using the two dichotomies final vs. non-final and initial vs.
non-initial, respectively. Non-final and non-initial both subsume medial positions.

Since in our data the reader produced each sentence in isolation, the last global, respectively
local segment of each sentence was classified as discourse segment final, and the others as non-
final. Accordingly, the first global segment of a sentence was labeled as discourse segment initial,
all others as non-initial.

3.3.1. Global contour classes
For each class it was tested separately (a) whether there is a significant relation to initial

position (i.e. initial vs. non-initial the latter subsuming the medial position) and (b) whether
there is a significant relation to final position (i.e. final vs. non-final the latter subsuming medial).
In case a significant relation between a contour class and a position was revealed, the direction
of this relation was determined by comparing the observed occurrence count of the class in the
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class segmentation
g1 non-initial, final
g2 initial, final
g3 non-initial, non-final

Table 1: Occurrence preferences of global contour classes within discourse segments.

respective position with the count to be expected in the case of independence. By this comparison
a positional preference (e.g. initial) or obstruction (non-initial) was concluded. For both positions
each class showed significant preferences or obstruction (χ2 values between 28.43 and 257.18
were obtained; α = 0.001). The relations are summarized in Table 1. One can see from this table,
that in our data the global contour marking of discourse segment initial and final parts is disjunct
only for class g1, that preferably occurs in final position but is only reluctantly used in initial
position. Class g2 in contrast has a preference for both positions from which can be inferred that
it is rarely to be observed in medial position. Both classes are characterized by a negative slope to
establish low F0 register values at the end of discourse segments. g3 in contrast has a preference
to occur neither in initial nor in final position from which can be inferred its preference for the
medial position to mark continuation by its positive slope.

In line with these findings χ2 tests relating contour classes and medial position showed a
significant preference for this position only for class g3 while g1 and g2 significantly more often
occur in non-medial (i.e. initial or final) position (χ2 values from 24.91 to 124.38, α = 0.001).

Unfortunately, the impact of pitch reset on discourse segmentation allowing for high topic
initial F0 register [31] could not be addressed directly, since in the training data each sentence
was produced in isolation, so that pitch reset values were not available for discourse segment
boundaries.

3.3.2. Local contour classes
Testing the significance of co-occurrences of contour classes and utterance finality by χ2 tests

(α = 0.05; [63]) resulted in the hypotheses: Finality is encoded by c1 and c5, continuation by
c2, c3, and c4, which is summarized in Table 2.

class segmentation information status
c1 final given
c2 non-final new
c3 non-final new
c4 non-final given
c5 final new

Table 2: Relations between contour classes as discourse segmentation (finality vs. non-finality) and information status
markers (new vs. given information). All relations are significant (χ2 tests, α = 0.05).

In a perceptual validation of these hypotheses single local segment utterances of the form
‘Eine X (an X).’ were presented. The stimuli had been synthesized by means of MBROLA
[64] using a male German voice database (de4). Segment durations had been calculated by
a regression tree which will be described in Section 4.2. For all F0 contours the F0 baseline
was constantly set to 80 Hz (declination slope 0), so that the contour variation was determined
solely by the local contour classes. The class-related contours were laid on the time-normalized
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utterances as illustrated in Figure 3. Time 0 was associated with the nucleus midpoint of the
stressed syllable in the target word X.

The 60 target words X were amongst others controlled for uniform syllable number and
structure, word frequency, and voicing, in order to rule out that word-intrinsic properties interfere
with its prosodic realization. The task was to allocate the stimuli on a 5-point bipolar scale with
the end points ‘Eine X und eine Y (an X and a Y)’ and ‘Eine X’. Allocating a stimulus to ‘Eine X’
implies that it is considered as a completed utterance and is thus characterized by segment-final
intonation, whereas allocating it to ‘Eine X und eine Y’ implies that subjects expect more to come
triggered by an intonation contour signaling continuation.

The subjects’ judgments for each class are shown in Figure 6 in the right boxplots to-
gether with the corpus-derived hypotheses marked by filled circles placed at 1 (non-final) or
5 (final). Except for class c5 all hypotheses were perceptually verified (Kruskal-Wallis test,
χ2

4 = 316.9, p < 0.001 [65]; Dunnett post-hoc test, α = 0.01; [66]). Furthermore, all classes were
perceptually identified with respect to finality, since all judgments differed significantly from the
mean level 3 of undecidedness (sign tests, α = 0.05, Bonferroni-corrected, |z| > 3.4, p < 0.001;
[67, 68]).

3.4. Information status

As described in [61] we automatically labeled nouns co-referring to preceding ones with the
information status given, and the others with new. To achieve this, first, the text was segmented
into thematic units using an adapted version of the TextTiling algorithm [30]. Subsequently,
coreference resolution was carried out within each of these units by means of an iterative pat-
tern matching procedure proposed by [69], extended by a transitive closure based on compound
analyses.

Considering the stylization parameters, only the offset polynomial coefficient differed sig-
nificantly across the conditions and was as expected higher in the new condition compared to
given. For local contour classes corpus statistics yielded that givenness was encoded by c1 and
c4, whereas the classes c2, c3, and c5 encoded new information (χ2 tests, α = 0.05). These results
are summarized in Table 2.

In order to perceptually verify these hypotheses the same subjects as introduced in Section 3.3
were asked to participate. They had to judge a stimulus Yes, an X (e.g. Yes, a flower) on a
five level bipolar scale whether it is rather an answer to the question ‘Is this an X? (Is this a
flower?’) or to ‘Is this a hypernym(X)? (Is this a plant?)’. If the stimulus ‘Yes, a flower’ is
perceived as an answer to ‘Is this a flower?’, it is considered as a confirmation not containing
any new information. However, as an answer to ‘Is this a plant?’ it contains new information that
specifies the hypernym ‘plant’. Thus, the judgment of the stimulus on the bipolar scale reflects
the subjects’ opinion whether its intonation encodes rather given or new information.

The generation of the stimulus part ‘. . . an X’ was carried out as described in the previous
section. The initial particle ‘Yes, . . . ’ received a linear F0 contour falling from 90 to 80 Hz and
was followed by a 300 ms pause.

As is shown by the left boxplots of Figure 6, except for class c4 the results were in line with
the hypotheses: c2, c3, and c5 were clearly perceptually bound to new information, and c1 to
givenness (Kruskal-Wallis test, χ2

4 = 217.1, p < 0.001, Dunnett post-hoc test, α = 0.05). As
with finality all classes were perceptually attributed to information status, again expressed by the
significant differences of all judgments from the mean level 3 (sign tests, Bonferroni-corrected,
|z| > 4.3, p < 0.001).
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4. Text-based local contour class prediction

4.1. Prediction models

For the global classes the predictions simply emerge from the Table 1. g1 can be chosen for
any non-initial (thus medial or final) position within a discourse segment. g2 is suggested for
both initial and final but not medial position, whereas g3 is complementary restricted to medial
(thus non-initial and non-final) positions.

For the local classes in accordance with our hypotheses in Table 2 derived from corpus statis-
tics a tree was handcrafted for choosing the appropriate class based on the simplified discourse
structure of an utterance. The linguistic concepts are represented by the non-terminal nodes of
the tree, their values by the outgoing branches, and local contour classes by the leafs. Thus, each
path through the tree represents one discourse structure setting and ends in a leaf suggesting a
corresponding local contour class. This tree is presented in Figure 7.

4.2. Perceptual evaluation

4.2.1. Subjects and method
Subjects. 14 subjects took part in the perceptual evaluation of global classes, and 15 subjects in
the evaluation of local classes. All subjects are German native speakers between 21 and 53 years,
and all of them are phonetic experts working at the Institute of Phonetics and Speech Processing
in Munich or post-graduate students of Phonetics. The subject groups for both evaluations are
not identical but overlap. The author did not take part as a subject.

Method for global class evaluation. The subjects were presented with pairs of sentences that
were either coherent or not. They had to judge the intonation with respect to whether or not it can
correctly express the connectedness of the sentences. Coherence was established by pronouns
and topic relatedness, separation by topic incongruity.

Examples for a coherent and an incoherent sentence pair used in this validation are:

coherent: Dort gibt es Bienen. Ihr Honig ist lecker. (There are bees. Their honey is
tasty.)
incoherent: Dort gibt es Bienen. Die Fähre kam pünktlich. (There are bees. The
ferry arrived in time.)

All eight sentence pairs are listed in Appendix B.1. Each sentence is considered as a global
segment, within which a global contour is fitted. For each sentence pair four global contour
variant types V∗ were generated:

• V: the global contour classes suggested by the prediction model in section 4.1 in order to
establish sentence coherence or incoherence,

• V1: only the contour class of the first sentence matches the prediction,

• V2: only the contour class of the second sentence matches the prediction, and

• V0: both contour classes contradict the prediction.

This can be related to the coherent sentence pair example above by the following schema:
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sentence 1 sentence 2
Discourse non-final non-initial
Variants

V g3 g1
V1 g3 g2
V2 g1 g1

g2 g1
V0 g1 g2

g2 g2

Since in this case sentences 1 and 2 are coherent, a non-final contour should be used for
the first sentence, and a non-initial contour for the second. The variant type V in line with
these recommendations thus assigns the non-final g3 class to the first sentence and the non-initial
g1 class to the second. Variant type V1 agrees with the recommendations only concerning the
finality-status of the first contour class g3 but contradicts the recommendations in assigning the
initial class g2. Variant type V2 agrees with V with respect to the contour class of the second
sentence (non-initial g1) but not for the first sentence, to which it assigns final g1 or g2. V0 does
not agree with the recommendations at all assigning a final class to sentence 1 (g1 or g2) and the
initial class g2 to sentence 2. All four variation types are shown in Appendix B.1. Since the
subject’s task was to judge the intonation marking of the sentence coherence and not the marking
of the end of the utterance or the sentence mode, for the final sentence only the falling slope
classes g1 and g2 were applied.

The F0 contour of a stimulus was generated in the following way: Each sentence was as-
signed a global contour according to the schema described above. No phonetic realization model
(cf. Section 2.3.4) was applied for the global contours in order to directly examine the impact of
the contour class on the listener judgments. The initial F0 value of the first sentence was set in
dependence of the first contour class to 75 Hz for g1, 85 Hz for g2 and 70 Hz for g3 to ensure a
realistic pitch range throughout the whole utterance. For the second sentence the first F0 value
results from the pitch reset regression model described in Section 2.3.4.

Within each local segment a local contour was added to the declination lines. For all global
contour variants the F0 values of these local contours were determined by the tree predictor in
Figure 7. In the example given above the contour specification of variant V is thus given by

[[Dort gibt es Bienen]c2]g3. [[Ihr Honig]c2 [ist lecker]c5]g.
(There are bees. Their honey is tasty.)

Bienen (bees) and Honig (honey) provide new information and are both in non-final dis-
course segment position. Thus class c2 is assigned to both local segments. Note that we have
not yet elaborated an intonation class prediction for other word classes than nouns, since the
concept of information status is not easily transferable. Nevertheless, in an informal pretest the
class c5 turned out to be appropriate for the adjective lecker (tasty) with respect to its discourse
characteristics (new, final) as well as to the assigned F0 contour. This could be an indication
that the automatic contour predictions may be extended to local segments containing predicative
adjectives.

For all incoherent cases the local contour class c5 was assigned to sentence 1 since it is
suggested by the tree for discourse segment final position. A variant V for the incoherent cases
is thus:
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[[Dort gibt es Bienen]c5]g1]. [Die Fähre]c2 [kam pünktlich]c5]g2.
(There are bees. The ferry arrived in time.

Thus, the local contour classes were always set to be in line with the tree predictions, whereas
the global classes were systematically varied.

To anchor the local contour classes within each local segment the time point 0 of the time-
normalized contours was aligned to the midpoint of the nucleus in stressed syllable of the head
word, i.e. the final content word. The local contours were subsequently adjusted to the context
by means of the corresponding regression models (cf. Section 2.3.4). As described Section 2.3.4
the joints of neighboring local contours were bridged by linear interpolation and smoothed by a
moving median filter.

The segment durations needed for the synthesis were derived from the model d̂x = d̄x ·

f , where d̂x is the predicted duration of phoneme x, d̄x its intrinsic duration set to the mean
duration found in a manually segmented sub-part of the SI1000P corpus. f is a factor adjusting
the intrinsic duration to the given context defined by accentuation, phrase finality and phoneme
class. This factor is predicted by a regression tree [70] trained on a SI1000P sub-part. With one
exception (one schwa occurrence was considered to be too long by one subject) the subjects did
not report any duration abnormalities.

Between the coherent sentences a pause of length 400 ms was inserted, while for the non-
coherent sentences the pause duration was set to 250 ms. This duration difference reduces the
impact of pause duration on coherence marking, thus the realization of incoherent sentences is
not only judged to be adequate due to a long pause, and vice versa for the realization of coherent
sentences. By reducing the reliability of the pause as a cue for coherence, the subjects’ attention
is expected to be drawn to the intonation contours.

As in the preceding studies the stimuli were synthesized using MBROLA [64] and a German
database (de4) available on the MBROLA project web page.

Eight test items were presented to the subjects: one for each of the eight sentence pairs
shown in Appendix B.1. In each of these trials the appropriateness of each of the four intonation
contour variant types had to be judged with respect to how well it marks the presence or absence
of coherence. Since always two variant types consist of two class pairs (final, non-initial: g1,
g1 and g2, g1; final, initial: g1, g2 and g2, g2) actually six contour variants were presented.
The subjects were asked to assign one value for each variant on a five-level bipolar Likert scale
between the endpoints non-adequate 1 and adequate 5. Thus, in each trial six judgments had
to be made. The stimuli were presented via closed headphones, and no upper limit was set to
stimulus repetition.

Method for local class evaluation. The subjects had to judge the intonation adequacy of local
target segments within different discourse contexts as in:

Dort steht eine Buche. [Die Buche]s1 verliert [ihre Blätter]s2.
(There is a beech tree. [The beech tree]s1 loses [its leaves]s2.)

The discourse context is provided by the preceding sentence, in this example There is a beech
tree. It determines the information status of the referents in the local segments s1 and s2. For
each of the segments four local contour variant types V∗ were generated:

• V: the local contour class suggested by the tree,
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• Vi: a contour class only matching the information status encoding requirements,

• Vs: a contour class only matching the discourse segmentation encoding requirements, and

• V0: a contour class neither matching the information status nor the segmentation encoding
requirements.

This can be related to the example above by the following schema:

Context There is a beech tree.
Carrier [The beech tree]s1 loses [its leaves]s2.
s1 Discourse given, non-final

Variants V: c4, Vi: c1, Vs: c2, c3, V0: c5

s2 Discourse new, final
Variants V: c5, Vi: c2, c3, Vs: c1, V0: c4

The local segment s1 is located in the non-final position and carries given information. As
can be seen in Figure 7 the tree suggestion is a c4 type contour. Three types of contrastive
variants to this prediction were generated: V0 (class c5) differs from c4 regarding information
status as well as discourse segmentation encoding. Vs differs with respect to information status
encoding (classes c2 and c3), and Vi regarding segmentation (class c1). All four context-carrier
configurations are shown in Appendix B.2.

Again the stimuli were synthesized using MBROLA [64] and the German database de4. F0
contours were generated in the following way: Each context and carrier sentence was assigned
a global contour component in accordance with the global class prediction model, thus the first
sentence received an “initial” g2 contour and the second a “final” g1 contour. Both contours were
adjusted amongst others to sentence length by the regression model introduced in Section 2.3.4.
The first onset was set to 85 Hz, and the second onset was derived dynamically from the pitch
reset regression model of Section 2.3.4.

On these declination lines one local contour per local segment was added. The F0 values of
these contours were determined by the underlying local contour class. Opposed to the declination
lines no phonetic realization models had been applied in order to directly examine the impact of
the contour classes in the target segments.

As documented in Appendix B.2 in detail, constant classes were chosen for the context
sentences and the verbs in the carrier sentences, and varying classes for the target segments.
Within each local segment the time point 0 of the time-normalized contours was aligned to the
midpoint of the nucleus in stressed syllable of the head word, i.e. the final content word. The
joints of neighboring local contours were bridged as described above. The segment durations
were derived from the duration model introduced in the preceding section. The pause between
the context and the carrier sentence was constantly set to 200 ms.

Eight test items were presented to the subjects: For each of the four sentence pairs shown in
Appendix B.2 one item for the target segment s1, and a one item for s2. In each of these trials the
appropriateness of each of the four intonation contour variant types on the marked target segment
had to be judged with respect to information status and discourse segmentation. Since always
one variant type consists of two classes, c2 and c3, actually five contour variants were presented.
The subjects were asked to assign one value for each variant on a five-level bipolar Likert scale
between the endpoints non-adequate 1 and adequate 5. Thus, in each trial five judgments had
to be made. The stimuli were presented via closed headphones, and no upper limit was set to
stimulus repetition.
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4.2.2. Results
Global class prediction. The judgments for all variants are presented as boxplots in Figure 8.
Results were the following:

• The predicted global contours were generally accepted. The judgment median is 4 and
thus significantly higher than the mean judgment level 3 (one-sided one-sample sign test
for median comparison, z = 4.12, p < 0.001; [71]).

• The predictions V were significantly higher rated than alternatives V2 and V0 (Kruskal-
Wallis test, χ2

3 = 9.36, p < 0.05, Scheffé post-hoc test, α = 0.05; [72]).

• There was no significant difference between V and V1 indicating that listeners rather relate
the declination pattern of the first sentence to topic coherence or shift.

Local class prediction. The judgments for all variants are presented as boxplots in Figure 9.
Results were the following:

• The contours suggested by the tree were generally accepted. The judgment median is 4
and thus significantly higher than the mean judgment level 3 (one-sided one-sample sign
test for median comparison, z = 7.28, p < 0.001).

• The tree predictions V were rated significantly higher than variant types Vi and Vo in
isolation (Kruskal-Wallis test, χ2

3 = 117.12, p < 0.001, Scheffé post hoc test, α = 0.05).
V showed also a tendency to be rated higher than Vs which is reflected in the arithmetic
mean rating difference of these variants (3.88 vs. 3.52) and a significant difference yielded
by the less conservative Dunnett post-hoc test, α = 0.05.

• All other variant ratings differed significantly (Kruskal-Wallis test, χ2
3 = 117.12, p <

0.001, Scheffé post-hoc test, α = 0.05). Variant Vs was rated higher than variant Vi in-
dicating that the subjects focused on the discourse segmentation function of intonation
rather than on the information status. As to be expected V0 received the lowest scores.

5. Discussion and Conclusions

5.1. Point of departure for bottom-up modeling
In order to get started with a knowledge-free bottom-up approach of intonation modeling,

several restrictions and simplifications concerning the data and its analyses were made. So far
only a single speaker was examined. However, due to the choice of a professional newsreader
producing clear and easily intelligible speech, it can safely be stated that the data contains in-
tonation patterns that are linked to linguistic concepts with high proficiency. In total, 10 out
of 12 corpus-based predictions of these links were confirmed in subsequent perception exper-
iments by [44, 61]. As in the current study in these experiments not the original voice but
an MBROLA voice had been presented, which indicates that the found relations are not just
speaker-idiosyncratic but more general.

Inter-speaker variability has not yet been addressed, but will be investigated in future stud-
ies. In principle, our approach can capture variability by distinguishing between abstract con-
tour classes and concrete F0 realizations. Within this framework it has to be tested whether
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it is possible to derive speaker-independent classes which can be mapped to the F0 surface by
speaker-dependent regression models as described in Section 2.3.4.

Concerning prosodic structure, the global segmentation guided only by speech pauses and
punctuation needs further improvement at the current state, since pauses are neither necessary
nor sufficient boundary markers. In a current study [73] we explore how automatically derived
F0 discontinuity features can be used to supplement the identification of prosodic boundaries.

In subsequent studies prosodic structure could be extended by the insertion of an interme-
diate layer between local and global segments, that is defined directly in information structure
terms. This layer would contain a sequence of theme (topic) and rheme (comment) segments
[74], that has been proven to have an impact on prosodic phrasing. To give an example, [75]
found for English that the prosodic attachment of a verb depends on its information status. It
is attached to the subject (theme) if its status is given, and to the object (rheme), if its status is
new. Furthermore, the intermediate layer could serve to examine how information structure is
encoded by the syntagmatic combination of local contour classes.

The discourse structure concepts examined here were highly simplified. Again this simplifi-
cation is considered to be an appropriate starting point given the bottom-up nature of the present
approach. Next steps should include interpretations in the context of more fine-grained discourse
concepts like different degrees of givenness [23, 43]. Since rather accent type preferences in-
stead of unique mappings of intonation and linguistic events are reported, it can be concluded
that principally already a small number of contour classes can be sufficient to encode more com-
plex information status concepts.

Also the NLP methods to generate the hypotheses for the linguistic anchoring were rather
crude. They are definitely not sufficient to replace sophisticated methods used for example in
speech synthesis for text-based intonation prediction, but nevertheless, they are of use for dis-
covering relations between intonation events and their linguistic functions, since in two former
studies of the author, [44] and [61], in total 83% of the predictions had been verified by the
subsequent perceptual validations.

Taken altogether, we argue that these simplifications are justified to find an appropriate point
of departure for our bottom-up modeling approach.

5.2. Intonation units for linguistic interpretation

5.2.1. From parameters to categories
To anchor the polynomial contour stylization that contains a high degree of variation to lin-

guistic concepts the CoPaSul framework provides an intermediate abstraction level by inference
of discrete classes from the continuous parameter space. The quality of this mapping depends
amongst others on the choice of the stylization function. Due to its analytical nature, the polyno-
mial contour fit is more suited for parameter clustering than the numerical fit of more complex
functions [24], since by the latter parameter vector distances are more loosely linked to contour
distances.

Other parametric approaches like the Fujisaki model allow for a direct parameter interpre-
tation [7, 8]. But again this semantically rich parameterization does not guarantee the repro-
ducibility of the intonation abstraction due to the underlying numerical optimization. If different
parameter values can be derived from the same underlying original contour, the linking of the
parameters to linguistics may not be possible in a straight-forward linear manner.

Generally, there is no straightforward solution for an appropriate derivation of categories
amongst others due to the various kinds of objects that could be clustered. We followed [24]

17



in clustering stylization coefficient vectors, but alternatively, the stylized F0 vectors themselves
could have been used. First, there is a methodological justification for using coefficient and
not F0 vectors: In machine learning dimension reduction and orthogonalization of the feature
vectors is beneficial [76]. While the F0 vectors consist of a high number of elements that are
highly correlated among each other, polynomial coefficients are exactly the result of a dimension
reduction and orthogonalization of these vectors, and are thus expected to be more appropriate.

Second, to test the linguistic adequacy of this alternative classification, we clustered the styl-
ized F0 vectors in exactly the same way as the coefficients. As introduced in section 3.3 we tested
by means of χ2 tests, whether or not the four derived contour co-occur significantly with the ex-
amined discourse events. The relation to utterance finality was significant for all four classes
(α = 0.05). However for none of the classes a significant relation to information status has been
found (χ < 1.2). It can thus be concluded that for our data coefficient vector classes are more
appropriate to reflect discourse structure than F0 vector classes.

5.2.2. Contours instead of tones
Analogously to the approach of [17] for ToBI label sequences, we trained a contour class

trigram probability model on the local contour class sequences of our data. Given that the vo-
cabulary consists of only five classes all trigram probabilities turned out to be relatively low (all
maximum likelihood estimates are below 0.34). This means that the contour class predictability
in a given intonation context is much lower than was found in [13] for pitch accent and boundary
tone sequences within the tone sequence framework. One can draw two conclusions from this
observation: First, the intonotactics of CoPaSul intonation events is not as restricted as found for
tone sequence approaches and for other models like the IPO model [77, 78]. Second, following
the argument of [13] low overall n-gram predictability can be seen as an indication for having
extracted proper basic building blocks and not block fragments co-occurring with probabilities
near one. Thus, these findings support the position that elementary intonation units are better
expressed as contours than tones.

5.3. Relations between contour classes and linguistic concepts

So far the local contour have been linked to semantic weight and elementary discourse struc-
ture concepts [44, 61]. As already pointed out the test of many other links like sentence mode,
contrast constructions and paralinguistics is pending. It is not yet clear how far one can get with
linguistic interpretations of this knowledge-free bottom-up approach of intonation modeling, but
nevertheless, the initial attempts are promising.

Since the local contour classes cover all combinations of information status (given, new)
and discourse segmentation (non-final, final), the derived set is sufficient at least for a crude
encoding of discourse structure. It was further possible to perceptually attribute a linguistic
function to each contour class since all mean perceptual judgments differed significantly from
the undecidedness level 3 on the 5 point scales. The relations turned out to be stable, since in
the present study the predicted contours received high scores by the subjects across different
intonation contexts.

There is no one-to-one mapping between local intonation classes and linguistic concepts:
More than one class can be used to encode the same concept (class correlations) and the same
class can be used to encode several concepts (concept correlations). Concept correlations are in
line with the results in [79] and [23] within the tone sequence framework revealing that the same
sequence of tones can have different pragmatic functions context-dependently and can encode
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different sentence modes. The class correlations that were found here do not allow for a com-
positional approach as in [23] distinguishing between pitch accents connected to the information
status of a discourse referent and boundary tones encoding finality or continuation. All local
contour classes derived in this study serve at the same time to encode information status and
discourse segmentation.

It is to be pointed out that our contour prediction is not yet fully automated, since local
contour classes can so far only automatically be assigned to local segments containing nouns.
Thus, further effort is needed to extend the predictions to local segments of any type. As stated
in section 4.2 the prediction was already applicable also to adjectives in predicative position.

5.4. Perceptual evaluation

This study aimed to integrate previous findings about the linguistic anchoring of the CoPaSul
approach which had been derived by perception experiments with a higher number of subjects.
These findings were incorporated into a tree for text-based intonation prediction whose output
was evaluated by phonetic experts. The choice of expert subjects allowed for a compact exper-
imental setup. The relatively complex demands on the subject decisions would have made it
necessary to run several experiments with naive subjects. Only simple sentences have been pre-
sented in order to allow for a straightforward linking of the subjects’ judgments to the responsible
intonation characteristics which eases the interpretation of the results. In other perception studies
[80, 81] the discourse context is specified in more detail by longer texts. The advantage over the
single-sentence contexts of the current study is, that the subjects are constrained not to add other
contextual factors than the ones being specified. On the other hand, processing more complex
discourse contexts is more demanding for the subjects, and thus may lead to misunderstandings
or even interferences across different contexts. In any case, in the experiments introduced in this
study no subject reported any difficulties arising from vague linguistic contexts.

Despite the small sample sizes and the required conservative statistical tests, significant re-
sults emerged concerning the acceptability of the generated contours. The intonation that con-
formed to the predictions was judged to be adequate significantly above the midpoint of the
rating scale for global and local contour classes. Furthermore, for local contour classes it was
judged to be significantly more adequate than intonation patterns contradicting the predictions. It
is very likely that these differences remain significant with increasing sample size, which would
additionally allow for less conservative tests. Thus, the claim that within our purely data-driven
framework acceptable and adequate intonation contours can be predicted from text is supported
by these results. For global contour classes it turned out that the intonation prediction before and
after potential topic shifts (variant V) does not offer any gain compared to the prediction of the
preceding intonation only (variant V1). The global contour class prediction model may thus be
reduced to cover only the sentence final global segments.

5.5. Relevance of the CoPaSul approach

The CoPaSul approach is partly eclectic in the sense that it aggregates characteristics of
established intonation models presented in Section 1. Regarding the requirements defined in
Section 1.2, namely an appropriate abstraction from the signal, the interpretability of the abstrac-
tion, and its automation, in our opinion the current approach provides several additional benefits:
Opposed to the other parametric models PaintE, PENTA, TILT, and the Fujisaki model, CoPaSul
offers a biunique mapping of the F0 contour to the parameter values which is expected to ease
linguistic interpretation. Like PaintE, CoPaSul additionally offers a symbolic representation in
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form of intonation contour categories, that are derived by clustering. However, while for PaintE
the cluster number was set manually in an ad hoc manner, in the current approach it arises di-
rectly from the data, using a subtractive clustering technique. This approach is suitable to obtain
repeatable results for disjunct data subsets concerning contour class number and shapes.

For PaintE, TILT, and most applications of the Fujisaki model, the domain of local F0 behav-
ior is defined in terms of realized pitch accents and boundary tones, while CoPaSul operates on
potential accent groups containing zero or one accent. The advantages of this approach are that
no preceding labeling of these prosodic events is required, and not only pitch accents but also
deaccentuation can be captured as an intonation event. In contrast to the PENTA model which can
also capture deaccentuation by describing local F0 behavior for each syllable, CoPaSul makes
contour characteristics spanning over several syllables more explicit, which is considered to be
favorable at least for languages that do not contain lexical tones.

5.6. Conclusion

It was possible to generate a perceptually acceptable intonation representation in a data-
driven partly automatic way. This representation can be interpreted linguistically with respect to
discourse structure and can thus be derived from the signal as well as from text. Therefore, this
approach can be of relevance for intonation analysis and synthesis and can be useful for speech
technology applications as well as for phonetic fundamental research for the automatic analysis
of speech data.
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[28] A. Schweitzer, B. Möbius, Experiments in Automatic Prosodic Labeling, in: Proc. Interspeech 2009, Brighton,

England, pp. 2515–2518.
[29] B. Grosz, C. Sidner, Attention, intentions, and the structure of discourse, Computational Linguistics 12 (1986)

175–204.
[30] M. Hearst, TextTiling: Segmenting Text into Multi-Paragraph Subtopic Passages, Computational Linguistics 23

(1997) 33–64.
[31] S. Nakajima, J. Allen, A study on prosody and discourse structure in cooperative dialogues, Phonetica 50 (1993)

197–210.
[32] M. Swerts, D. Bouwhuis, R. Collier, Melodic cues to the perceived ”finality” of utterances, Journal of the Acous-

tical Society of America 96 (1994) 2064–2075.
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[35] J. Hirschberg, J. Pierrehumbert, The intonational structuring of discourse, in: Proc. 24th Annual Meeting, Associ-

ation for Computational Linguistics 1986, New York, pp. 136–144.
[36] J. Venditti, J. Hirschberg, Intonation and discourse processing, in: Proc. ICPhS 2003, Barcelona, Spain, pp.

107–114.
[37] E. Prince, Toward a taxonomy of given-new information, in: Radical Pragmatics, Academic Press, New York,

1981, pp. 223–255.
[38] W. Chafe, Discourse, Consciousness, and Time: The Flow and Displacement of Conscious Experience in Speaking

and Writing, The University of Chicago Press, Chicago, 1994.
[39] J. Gundel, N. Hedberg, R. Zacharski, Cognitive status and the form of referring expressions in discourse, Language

69 (1993) 274–307.
[40] G. Brown, Prosodic structure and the given/new distinction, in: D. Ladd, A. Cutler (Eds.), Prosody: Models and

Measurements, Springer-Verlag, 1983, pp. 67–78.
[41] M. Grice, S. Baumann, R. Benzmüller, German Intonation in Autosegmental-metrical Phonology, in: Jun, Sun-Ah

(Eds.), Prosodic Typology: The Phonology of Intonation and Phrasing, OUP, Oxford, 2005, pp. 55–83.
[42] J. Hirschberg, D. Litman, J. Pierrehumbert, G. Ward, Intonation and the intentional structure of discourse, in: Proc.

10th international joint conference on Artificial intelligence 1987, volume 2, Milan, Italy, pp. 636–639.
[43] S. Baumann, The Intonation of Givenness – Evidence from German, Ph.D. thesis, Saarland University, 2006.
[44] U. Reichel, The CoPaSul intonation model, in: B. Kroeger, P. Birkholz (Eds.), Elektronische Sprachverarbeitung

2011, Studientexte zur Sprachkommunikation, TUDpress, 2011, pp. 341–348.
[45] F. Schiel, Automatic Phonetic Transcription of Non-Prompted Speech, in: Proc. ICPhS 1999, San Francisco,

California, pp. 607–610.
[46] K. Schaefer-Vincent, Pitch period detection and chaining: Method and evaluation, Phonetica 40 (1983) 177–202.
[47] C. de Boor, A Practical Guide to Splines, number 27 in Applied Mathematical Sciences, Springer, 1978.
[48] P.-O. Persson, G. Strang, Smoothing by Savitzky-Golay and Legendre Filters, in: D. Gilliam (Ed.), Mathematical

systems theory in biology, communications, computation, and finance, Springer, 2003, pp. 301–315.

21



[49] J. Nelder, R. Mead, A simplex method for function minimization, Computer Journal 7 (1965) 308–313.
[50] U. Reichel, Improving Data Driven Part-of-Speech Tagging by Morphologic Knowledge Induction, in: Proc. AST

Workshop 2007, Maribor, Slovenia, pp. 65–73.
[51] U. Reichel, Perma and Balloon: Tools for string alignment and text processing, in: Proc. Interspeech 2012,

Portland, Oregon, p. paper no. 346.
[52] J. Gee, F. Grosjean, Performance structures: a psycholinguistic and a linguistic appraisal, Cognitive Psychology

15 (1983) 411–458.
[53] S. Abney, Parsing By Chunks, in: R. Berwick, S. Abney, C. Tenny (Eds.), Principle-Based Parsing, Kluwer

Academic Publishers, Dordrecht, 1991, pp. 257–278.
[54] D. Hermes, Measuring the perceptual similarity of pitch contours, Journal for Speech, Language, and Hearing

Research 41 (1998) 73–82.
[55] O. Niebuhr, Categorical perception in intonation: a matter of signal dynamics?, in: Proc. Interspeech 2007,

Antwerpen, Belgium, pp. 109–112.
[56] S. Chiu, Fuzzy Model Identification Based on Cluster Estimation, Journal of Intelligence & Fuzzy Systems 2

(1994) 267–278.
[57] U. Reichel, F. Kleber, R. Winkelmann, Modelling similarity perception of intonation, in: Proc. Eurospeech 2009,

Brighton, England, pp. 1711–1714.
[58] B. Connell, D. Ladd, Aspects of pitch realisation in Yoruba, Phonology 7 (1990) 1–30.
[59] J. de Pijper, A. Sandermann, On the perceptual strength of prosodic boundaries and its relation to suprasegmental

cues, Journal of the Acoustical Society of America 96 (1994) 2037–2047.
[60] M. Swerts, R. Geluykens, Prosody as a marker of information flow in spoken discourse, Language and Speech 37

(1994) 21–43.
[61] U. Reichel, Automatisation of intonation modelling and its linguistic anchoring, in: Proc. Speech Prosody 2012,

Shanghai, China, pp. 63–66.
[62] D. Bolinger, Intonation: Levels Versus Configurations, Word 7 (1951) 199–210.
[63] K. Pearson, On the criterion that a given system of derivations from the probable in the case of a correlated

system of variables is such that it can be reasonably supposed to have arisen from random sampling, The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50 (1900) 157–175.

[64] T. Dutoit, F. Bataille, V. Pagel, N. Pierret, O. van der Vreken, The MBROLA Project: Towards a Set of High-
Quality Speech Synthesizers Free of Use for Non-Commercial Purposes, in: Proc. ICSLP 1996, Philadelphia,
Pennsylvania, pp. 1393–1396.

[65] W. Kruskal, W. Wallis, Use of ranks in one-criterion variance analysis, Journal of the American Statistical Asso-
ciation (1952) 583–621.

[66] D. C.W., A multiple comparison procedure for comparing several treatments with a control, Journal of the Ameri-
can Statistical Association 50 (1955) 1096–1121.

[67] J. Karas, I. Savage, Publications of Frank Wilcoxon (1892–1965), Biometrics 23 (1967) 1–10.
[68] O. Dunn, Multiple Comparisons Among Means, Journal of the American Statistical Association 56 (1961) 52–64.
[69] M. Hearst, Automatic acquisition of hyponyms from large text corpora, in: Proc. International Conference on

Computational Linguistics 1992, volume 2, Nantes, France, pp. 539–545.
[70] L. Breiman, J. Friedman, C. Stone, R. Olshen, Classification and Regression Trees, Wadsworth & Brooks, Pacific

Grove, California, 1984.
[71] H. Mann, D. Whitney, On a test of whether one of two random variables is stochastically larger than the other,

Annals of mathematical Statistics 18 (1947) 50–60.
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Appendix A. Clustering, contour class, and regression model characteristics

For cluster initialization subtractive clustering [56] was applied, that iteratively locates initial
centers in the parameter space at regions with high data density. It was carried out using the
SUBCLUST Matlab function. The following four parameters need to be initialized: (1) the clus-
ter radius, that determines the size of the clusters, (2) the squash factor, which is to be multiplied
with the radius and defines the neighborhood of cluster centers within which new centers are
discouraged, (3) the accept ratio to set the minimum neighborhood density as a fraction of the
density of the first cluster center, above which another data point will be accepted as a center,
and (4) the reject ratio, that gives the neighborhood density as a fraction of the density of the first
cluster center, below which a data point will be rejected as a center. Generally, a low number
of non-overlapping clusters is derived by reasonably high values for all four parameters. To find
a local optimum for these parameter values for a sample of 20% of the data, the Nelder-Mead
Simplex optimization (Matlab function FMINSEARCH) was utilized. The error to be minimized
was derived from the mean clustering silhouette as in [20]. The silhouette for the data point i
is defined as S (i) =

dB(i)−dA(i)
max(dA(i),dB(i)) . dA(i) is the mean squared Euclidean distance of point i to all

points of the same cluster. dB(i) is mean distance of point i to all points of the most i-similar
cluster B , A. Its values fall within the range from −1 to 1. The closer the silhouette approaches
1 the more clearly and thus better is the assignment of i to its cluster. Values close to −1 indicate
and erroneous assignment. The mean silhouette S̄ over all data points was transformed to an er-
ror measure e ranging from 0 to 1 by the following equation: e = 1−S̄

2 . The optimized parameter
values and the errors are listed separately for global and local contour clustering in Table A.1.

Subsequently, k-means clustering was carried out starting with these initial cluster centers.
In Tables A.2 and A.3 the polynomial coefficients of the global and local contour class centroids
are presented.

Table A.4 shows the coefficients of the linear regression models mapping the contour class
centroids to context dependent realizations.

global classes local classes
radius 0.3075 0.3075

squash factor 1.1875 1.2812
accept ratio 0.5125 0.5125
reject ratio 0.1537 0.1425

error 0.1693 0.3078

Table A.1: Subtractive clustering parameter values optimized by the Nelder-Means method. Details on these parameters
and the error definition are presented in Appendix Appendix A.

class slope p l
g1 −4.2176 0.46 17
g2 −9.2595 0.29 15
g3 1.0208 0.25 14

Table A.2: Global contour class characteristics. p: relative frequency; l: mean length in syllables.
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class a0 a1 a2 a3 p l
1 0.2537 −0.9297 0.7758 0.4436 0.22 5
2 5.1403 6.8721 −0.9293 −7.2646 0.18 4
3 3.5853 −6.2229 0.9980 7.8085 0.17 6
4 2.7439 3.1747 3.1763 −2.4418 0.20 5
5 5.8955 −0.2384 −1.7163 0.2772 0.23 5

Table A.3: Local contour class characteristics. Polynomial coefficients ak from
∑3

k=0 ak · tk; p: relative frequency; l:
mean length in syllables.

Local contours Global contours Pitch reset
ao a1 a2 a3 b r

wo -0.2187 -0.3150 -0.4874 -0.2890 -0.2954 0.1168
w1 0.3000 0.4092 0.0338 0.4086 0.5077 -0.5490
w2 0.2912 0.0102 0.0227 0.0031 0.0067 -0.4956
w3 0.0658 -0.0357 -0.0371 -0.0388 -0.0221 0.2166
w4 -0.0381 -0.0100 -0.0159 -0.0409 – –
ρ 0.69 0.67 0.63 0.71 0.80 0.82

Table A.4: Phonetic realization models introduced in section 2.3.4: regression weight values wx to adjust the contour
class polynomial coefficients and the pitch reset r. ax: local class coefficients, b: global contour class slope. In the
bottom row the Pearson’s correlation coefficient ρ of target and predicted values is presented.

Appendix B. Stimuli for adequacy ratings

Appendix B.1. Global contour classes
Coherent sentence pairs.

• ‘Dort steht eine Buche. Ihre Blätter sind grün. (There is a beech tree. Its leafs are green.)’

• ‘Da liegt eine Geige. Ihre Saiten sind neu. (There is a violin. Its strings are new.)’

• ‘Dort gibt es Bienen. Ihr Honig ist lecker. (There are bees. Their honey is tasty.)’

• ‘Hier gibt es Birnen. Sie schmecken sehr saftig. (Here we have pears. They are very
juicy.)’

Discourse Local contour classes
Sentence 1 non-final [Dort steht eine Buche]c2
Sentence 2 non-initial [Ihre Blätter]c2 [sind grün]c5

Global contour V: g3 + g1; V1: g3 + g2;
pair variants V2: g1 + g1, g2 + g1; V0: g1 + g2; g2 + g2

Incoherent sentence pairs.

• ‘Dort steht eine Buche. Meine Schwester hat Fieber. (There is a beech tree. My sister
suffers from fever.’

• ‘Da liegt eine Geige. Es gibt Nudeln aus der Dose. (There is a violin. We’ll have noodles
from the can.)’
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• ‘Dort gibt es Bienen. Die Fähre kam pünktlich. (There are bees. The ferry arrived in
time.)’

• ‘Hier gibt es Birnen. Der Kellner trägt keine Socken. (Here we have pears. The waiter
does not wear socks.)’

Discourse Local contour classes
Sentence 1 final [Dort steht eine Buche]c5

Sentence 2 initial [Meine Schwester]c2 [hat Fieber]c5

Global contour V: g1 + g2, g2 + g2; V1: g1 + g1, g2 + g1;
pair variants V2: g3 + g2; V0: g3 + g1

Appendix B.2. Local contour classes

• Sentence pair 1: ‘Dort steht eine Buche. Die Buche verliert ihre Blätter. (There is a beech
tree. The beech tree is losing its leaves.)’

Context Dort steht eine Buche.
Carrier [Die Buche]s1 verliert [ihre Blätter]s2.
s1 Discourse given, non-final

Variants V: c4; Vi: c1; Vs: c2, c3; V0: c5

s2 Discourse new, final
Variants V: c5; Vi: c2, c3; Vs: c1; V0: c4

• Sentence pair 2: ‘Dort steht eine Buche. Auch ein Traktor und ein Ochse. (There is a
beech tree. Also a tractor and an ox.)’

Context Dort steht eine Buche.
Target [Auch ein Traktor]s1 [und ein Ochse]s2.
s1 Discourse new, non-final

Variants V: c2, c3; Vi: c5; Vs: c4; V0: c1

s2 Discourse new, final
Variants V: c5; Vi: c2, c3; Vs: c1; V0: c4

• Sentence pair 3: ‘Dort steht eine Buche. Die Kinder bewundern die Buche. (There is a
beech tree. The children admire the beech tree.)’

Context Dort steht eine Buche.
Target [Die Kinder]s1 bewundern [die Buche]s2.
s1 Discourse new, non-final

Variants V: c2, c3; Vi: c5; Vs: c4; V0: c1

s2 Discourse given, final
Variants V: c1, Vi: c4, Vs: c5, V0: c2, c3

• Sentence pair 4: ‘Dort steht eine Buche und eine Scheune. Die Buche verdunkelt die
Scheune. (There is a beech tree and a barn. The beech tree darkens the barn.)’
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Context Dort stehen eine Buche und eine Scheune.
Target [Die Buche]s1 verdunkelt [die Scheune]s2.
s1 Status given, non-final

Variants V: c4; Vi: c1; Vs: c2, c3; V0: c5

s2 Status given, final
Variants V: c1; Vi: c4; Vs: c5; V0: c2, c3

For the background segments, i.e. the local segments other than the target segments s1 and
s2 following contour classes have been used:

Background Segment Contour class
[Dort steht eine Buche] c5
[Dort stehen eine Buche] . . . c4
. . . [und eine Scheune] c5
. . . [verliert] . . . c1
. . . [bewundern] . . . c5
. . . [verdunkelt] . . . c5

Remarks: The verb steht (is) was treated as an auxiliary as in English, so that it does not de-
mand its own local segment. In order to avoid that the background segments affect the adequacy
judgments of the target segments (1) the first sentence was separated from the second one, that
contains the targets, by means of the finality encoding contour class c5. (2) For the other back-
ground segments the 3 least prominent contour classes c1, c4, and c5 had been chosen, whereas
class prominence had been derived from a former perception experiment [20].
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Figure 1: CoPaSul F0 representation as a superposition of global and local intonation contour classes for the utterance
Die Tiere verstummen, ein Unheil naht (The animals hush, a disaster is approaching.)
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Figure 2: Linear global contour stylization in form of a baseline within a global intonation segment of our data. The
contour is given by the flattest bottom tangent through syllable related F0 minima. Absolute and normalized time values
are given in the top and bottom abscissa, respectively.
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Figure 3: Local contour stylization within a time-normalized local intonation segment by a third order polynomial. The
stylization is based on the F0 values in 110 ms time windows centered on the syllable nuclei. The original F0 values
are given by the thin discontinuous line, the stylization is shown by the solid continuous line. The five blocks represent
the time windows around the syllable nuclei marked by the thin midline. Absolute and normalized time values are given
in the top and bottom abscissa, respectively. Normalized time 0 is assigned to the nucleus of the stressed syllable of
the segment-final content word, so that the peak of the F0 contour can be interpreted relative to the accent position.
Underlying utterance part: in der bosnischen (in the Bosnian).
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Figure 4: Global (g1−3) and local (c1−5) contour classes.
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Figure 5: Phonetic realization of the superposition of the global contour class g1 and a sequence of two local contours of
class c2. Linear regression models mediate between contour classes (dashed lines) and their context-dependent realiza-
tions (solid lines). The global contour’s initial level is derived from a pitch reset model. The local contours are warped
from normalized time (bottom abscissa) to the segmental durations of the utterance (top abscissa) and are added to the
global contour. The gap between the local contours is bridged by linear interpolation and subsequently smoothed by a
moving median filter. Underlying utterance part: der Bundestag hat am Dienstag (the Bundestag [has] on Tuesday).
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Figure 6: Boxplots for the perceptual judgment distributions of the local contour classes c1 − c5 with respect to novelty
(left boxplots; 1=given, 5=new) and finality (right boxplots; 1=non-final, 5=final). The corpus-statistics-based hypothe-
ses about the linguistic function of the contour classes are marked by filled diamonds placed at level 1 or 5, respectively.
The hypotheses where confirmed in 8 out of 10 cases (exceptions: c4 and novelty, c5 and finality).
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Figure 8: Boxplots for the distributions of adequacy judgments for the predicted global intonation pattern V and its
variants V∗. V1 is in line with the prediction only for the first sentence, V2 only for the second sentence, and V0 not at all.
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Figure 9: Boxplots for the distributions of adequacy judgments for the predicted local intonation pattern V and its variants
V∗. Vi is in line with the prediction only for information status, Vs only for discourse segment finality, and V0 not at all.
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