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Abstract: A new data-driven and linguistically interpretable intonation model for
the automatic analysis and synthesis of fundamental frequency contours is intro-
duced: the CoPaSul model, which provides a contour-based (Co), parametric (Pa),
and superpositional (Sul) intonation representation. Its application in F0 analysis
and generation is described as well as its linguistic anchoring with respect to se-
mantic weight and utterance finality.

1 Introduction

Established intonation models can roughly be divided with respect to three dichotomies:

1. the chosen units: tones vs. contours,

2. their description: symbolic vs. parametric, and

3. their arrangement: single-layered vs. superpositional.

Some examples: the tone sequence approach of Pierrehumbert [11] can be characterised as
tone-based, symbolic and single-layered, since fundamental frequency (F0) within an intona-
tion phrase is described as a single-layered sequence of tone symbols. The Fujisaki model [7]
is to be characterised as contour-based, parametric and superpositional. F0 contours are consid-
ered as a superposition of a global phrase component related to declination and a local accent
component related to F0 movements on accented and phrase-final syllables. The components
are parametrically represented as critically damped systems activated by phrase and accent com-
mands respectively. The PaintE model [9] is to be described as contour-based, parametric and
single-layered. It provides a parameterisation of the F0 contour in the scope of accented and
phrase-final syllables. By means of parameter vector clustering the PaintE model additionally
offers a symbolic F0 representation [10].
The advantage of a parametric unit description is its direct linking to the signal. While symbolic
representations need experts or additional modules to derive symbols from the signal [16] or to
generate F0 contours [2], parameters can be directly inferred from and transformed into F0
values.
Concerning the character of the chosen units, contours are inherently more related to parametric
descriptions than tones. On the one hand, one might argue for a tone-based approach supported
by the perceptual tonal movement coding hypothesis [8]. On the other hand, [5] demonstrated
tone labels to be almost entirely determined by the preceeding tones concluding that not single
tones but rather tone sequences and thus contours are the relevant intonation units.



The advantage of a superpositional arrangement lies in its capability to adequately model global
phenomena like declination. Furthermore, it offers the possibility to account for findings of pre-
planning in intonation production [4], e.g. reflected by the relation between utterance length and
declination slope.
The design of the CoPaSul model originally developed in [13] (where it is referred to as the
PKS model) is based on these considerations and will be described in the following section.

2 The CoPaSul model

2.1 General description

The CoPaSul model provides a parametric, contour-based, and superpositional F0 representa-
tion. F0 contours are treated as a superposition of global and local components. These com-
ponents are anchored in a hierarchic prosodic structure defined by global and local segments
which roughly correspond to intonation phrases and accent groups respectively. The stylisa-
tion of the F0 contours is carried out as follows: Within each global segment a linear F0 base
contour is fitted. After the subtraction of this global baseline within each local segment a third
order polynomial is fitted to the F0 residual. Subsequently, a symbolic description of the intona-
tion inventory in form of global and local contour classes is derived by polynomial coefficient
clustering. On the phonetic level, linear regression models adjust these abstract units to the
respective prosodic context.

Figure 1 - CoPaSul F0 representation as a superposition of global and local intonation contour classes.
See section 2.3 for further explanations.

2.2 Data and preprocessing

The data origins from the SI1000P corpus [15] containing 190 minutes of read German speech
of a professional male speaker. F0 contours were extracted by the Schaefer-Vincent algorithm
[14] and transformed to semitones (base 50 Hz). F0 errors and voiceless segments were bridged
by shape-preserving piecewise cubic Hermite interpolation. The contours were smoothed by a
Savitzky-Golay filter of order 3 and window length 5. Pauses and syllable nuclei were detected



as described in [13]. On the text level, part of speech tagging was carried out by a tagger
developed in [12]. Signal and text were aligned by MAUS [15].

2.3 F0 analysis

2.3.1 Prosodic structure

Global intonation segments are delimited by speech pauses and punctuation. This segmenta-
tion was carried out automatically based on the preceeding signal-text alignment and the pause
detection. Local intonation segments were defined as a chunk of function words terminated by
a content word or a global segment boundary. This notion roughly corresponds to chunking
approaches as in [1] and ensures in most cases that each local segment maximally contains one
accented syllable. The utterance illustrated in Figure 1 Die Tiere verstummen, ein Unheil naht.
(The animals hush, a disaster is approaching.) is divided into global segments at punctuation
marks, and each global segment is further divided into local segments by placing a bound-
ary behind each content word yielding the following structure: [[Die Tiere] [verstummen], [[ein
Unheil] [naht]].

2.3.2 F0 stylisation

All stylisations are based on the F0 values in frames of 110 ms centered on the detected syllable
nuclei. This approach has the advantages, that (1) it relies on robust syllable nucleus detection,
(2) there is no need for an exact syllable segmentation, and (3) no weighting of more and less
important parts of the F0 is required. Global and local contour stylisation as described in the
subsequent paragraphs is shown in Figure 2.

Global contours Within each global intonation segment, a declination baseline is derived as
follows: for each syllable nucleus window the median of the F0 values below the 10th percentile
is taken as an F0 base value. The baseline then is adjusted as a bottom tangent of the sequence
of these base values [13]. This baseline is the subtracted from the F0 contours, and its slope is
recorded for subsequent clustering (see section 2.3.3).

Local contours Within each local segment a third-order polynomial is fitted to the time-
normalised residuum contour. Time is normalised as follows: the time span of the local segment
is set from -1 to 1, 0 placed on the nucleus of the stressed syllable of the segment-final word
(the content word), so that the peak of the F0 contour can be interpreted relative to the accent
position. This approach requires separate normalisations of the pre- and post-accent parts of the
local segment.

2.3.3 Contour classes

Contour classes were derived by Kmeans clustering of the range-normalised coefficients. For
global classes the baseline slope values were clustered, for local classes the polynomial coeffi-
cient vectors with respect to their squared euclidean distances. Cluster initialisation was carried
out by subtractive clustering which itself was optimised by a simplex method on a data sub-
set for mean cluster silhouette maximisation [13]. Figure 3 shows the centroids of the resulting
global and local contour classes. In Figure 1 the intonation aspects related to the two global seg-



Figure 2 - Left: Linear global contour stylisation in form of a baseline in a global intonation segment.
Right: Local contour stylisation in a local intonation segment by a third order polynomial; The stylisa-
tion is based only on the F0 values around the syllable nuclei as indicated by the plotted time windows.

ments are represented by the global contour class sequence g2, g2, and the intonation aspects
related to the four local segments by the local class sequence c2, c4, c5, c1.

Figure 3 - Global (g1−3) and local (c1−5) contour classes.

2.3.4 Phonetic realisation models

Contour realisations The mapping of the “phonologic” level of abstract contour class cen-
troids to the phonetic level of the intonation surface is carried out by linear regression models.
By this means, the slope realisation of global contours is derived from the underlying centroid
slope, the realised slope of the preceeding contour, and the length of the current global seg-
ment (given as the number of syllables). Each local contour coefficient realisation is predicted
from its underlying centroid coefficient, the realised slope of the global contour, and the relative
position of the local segment within the global segment.



Pitch reset At junctions between global segments as shown in Figure 1 pitch reset is modelled
by a linear regression model using as predictors the realised slopes of the two global contours,
the length of the interjacent pause and the F0 baseline value of the final syllable in front of the
juncture. For all linear regressions, the predictors are range-normalised and orthogonalised by
means of a principal component analysis.

2.4 F0 generation

For F0 generation an utterance is first segmented into global and local segments according to
pause, punctuation and part of speech information. After having chosen appropriate contour
classes they are mapped to their phonetic realisations by the linear regression models described
in the preceeding section. For every global segment the pitch reset model determines the global
contour F0 starting point. Finally global and local contour realisations are time-denormalised
to the concrete utterance, superimposed by addition and transformed to Hertz values. Within a
global segment shape-preserving piecewise cubic Hermite interpolation is carried out to smooth
F0 discontinuities between adjacent local contours.

2.5 Results

Objective evaluation In a ten-fold cross validation the CoPaSul model was evaluated on held-
out test data with respect to the root mean square error (RMSE) and the correlation between
original and predicted contours. The RMSE represents the distance of model prediction from
the original values, the correlation expresses the form similarity between the contours. A mean
RMSE of 21.14 Hz, and mean correlation of 0.47 was achieved on the held out data. There was
no significant performance difference between training and test data (Mann-Whitney, p > 0.4),
altogether speaking for a good generalisation capability on an average performance level.

Perceptual evaluation Using TD-PSOLA as implemented in PRAAT resynthesised stimuli
with original and modelled F0 contours were rated by 24 subjects (age between 22 and 47,
German mother tongue, 19 females, students or researchers of Phonetics) with respect to their
naturalness on a five-level scale. The mean naturalness rating amounted 3.12 for the modelled
contours on the held out data, which is significantly below the mean judgment of the original
contours 4.07 (Mann-Whitney, p < 0.001) but also significantly above the average 3 (one-sided
sign test, p < 0.05).

3 Linguistic interpretation

The linguistic anchoring of the CoPaSul model was examined the following way: by automatic
linguistic corpus analyses hypotheses about possible relations between local contour classes and
linguistic concepts were generated. These hypotheses were subsequently tested in perception
experiments.

3.1 Semantic weight

3.1.1 Modelling

The concept of semantic weight is based on a definition given by [3] as the predictability of a
word, which can be expressed in quantitative terms. In this study it was measured in form of



linear interpolated trigram probabilities of the final content words of the local segments. Uni-
gram probabilities provide an approximation of their context-independent predictability while
bi- and trigram probabilities reflect their context-dependent predictability.

3.1.2 Corpus statistics

The class-dependent predictabilities are presented as boxplots in the left panel of Figure 4.
A one-factor analysis of variance revealed significant differences in the word predictabilities
with respect to the factor local intonation class (F [4,9214] = 31.7, p < 0.001). By post hoc
comparison class c2 was identified to contain content words of significantly lower probability
and thus higher semantic weight than the other classes (Turkey-Kramer, α = 0.001). At the
opposite end, words realised by class c1 are of significantly lower semantic weight than words
of the other classes (α = 0.005). From these results two hypotheses are formulated:

H1 class c1 encodes low semantic weight

H2 class c2 encodes high semantic weight

3.1.3 Perceptual validation

Subjects and Method H1 and H2 were subsequently tested by a perception experiment, the
same 24 subjects as described in section 2.5 took part in. Single local segment utterances
were resynthesised with the five local intonation contour classes as well as with 5 distractor
contours by MBROLA [6] based on a German diphone database and presented via headphones.
Segment durations were calculated by multiplying their intrinsic (mean) durations by a factor
predicted by a regression tree model (see [13] for details). All utterances were derived from the
template Das ist eine X (This is an X). The 60 target words X were amongst others controlled
for uniform syllable number and structure, word frequency, and voicing. The subjects had to
rate the importance of the utterance as signaled by the speaker on a 5-point Likert scale.

Results As can be seen in the middle panel in Figure 4 class c2 was perceptually attributed
to significantly higher and c1 to significantly lower semantic weight than the other classes
(Kruskal-Wallis, χ2

4 = 515.36, p < 0.001; Dunnett post hoc, α = 0.01). Thus, hypotheses
H1and H2 were perceptually confirmed.

3.2 Utterance finality

3.2.1 Corpus statistics

Since the reader produced each sentence in isolation, the last local segment of each sentence
was classified as utterance final, and the others as non-final. Testing the significance of co-
occurrences of contour classes and utterance finality resulted in two hypotheses (χ2 > 17.5,α =
0.001):

H3 c1 and c5 encode finality

H4 c2, c3, and c4 encode non-finality



Figure 4 - Left: Corpus statistic results: content word trigram probabilities for the 5 local contour
classes. Mid: Perceptual validation: Class-dependent weight ratings. Right: Perceptual finality judg-
ments depending on local contour classes.

3.2.2 Perceptual validation

Subjects and Method Again the same 24 subjects as described in section 2.5 took part in this
experiment. The stimuli were resynthesised as specified in section 3.1.3. This time the template
sentence was: Eine X (an X). X was taken from the same target word pool as above. The task
was to allocate the stimuli on a 5-point bipolar scale with the end points ’Eine X und eine Y’
(’an X and a Y’) and ’Eine X’. Allocating a stimulus to ’Eine X’ implies that it is considered
as a completed utterance and thus is characterised by an utterance-final intonation. Allocating
it to ’Eine X und eine Y’ implies, that subjects expect more to come triggered by a progredient
intonation contour.

Results As can be seen on the right hand side in Figure 4, finality judgments differed signifi-
cantly for classes c1 (final) and c4 (non-final; Kruskal-Wallis, χ2

4 = 316.92, p < 0.001; Dunnett
post hoc, α = 0.01). All classes were perceptually classified with respect to finality since
all judgments differed significantly from the mean 3 representing “undecided” (one-sided sign
tests, α = 0.05, Bonferroni-corrected, |z|> 3.40, p < 0.001).
H4 was confirmed: c2, c3, and c4 pere perceived as progredient and thus encode non-finality.
H3 was just partly confirmed: while c1 was perceived as utterance final, c5 was rather perceived
as non-final, however to a lesser degree than the other classes.

4 Discussion

4.1 The CoPaSul model

An essential demand for designing the CoPaSul model has been to keep the required training
corpus preparations as low as possible. All preprocessing steps have been automatised in this
study. This allows for a fast adaptation of the model to other speech data and avoids inter-labeler
inconsistencies.
Polynomial stylisation even of low order is capable to encode prominence and progredience,
and guarantees as an analytic approximation method a biunique mapping between signal and



stylisation which is considered to be crucial for a subsequent interpretable parameter clustering.
Up to now, the model was developed on the basis of read speech of one professional speaker.
By this choice widely acceptable intonation contours are guaranteed, but nevertheless, the next
step will be to confront this model with spontaneous speech data.

4.2 Linguistic anchoring

Based on corpus statistics hypotheses about the linguistic functions of local contour classes were
derived and subsequently tested by perception experiments. With one exception the hypotheses
have been confirmed. By this linguistic anchoring it has been shown that the CoPaSul model
is appropriate to generate an intonation representation which can be derived from the signal as
well as from text, which could make this model interesting for intonation analysis and synthesis
in fundamental research and speech technology.
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