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Abstract: An algorithm for word stress assignment in German compoundsis in-
troduced. First, a metrical tree is automatically derived from adjacent morpheme
cohesion scores which are based on co-occurrence statistics. This tree is used to
identify the stressed compound part by applying the compound stress rule of metri-
cal phonology. Then the stressed syllable is identified within this compound part by
means of a k-nearest-neighbor classifier using weighted vowel quantity and sylla-
ble coda type features. The accuracy of the metrical compound analysis amounted
to 83%. Compound stress assignment was successful in 95%, andstress location
within multi-syllable word stems in 84% of all cases.

1 Introduction

For languages like German with a highly productive lexical compounding tendency word stress
assignment is to be carried out in two steps: the identification of the stressed compound part, and
the localisation of the stressed syllable within this part.The first task can be accomplished by
adopting concepts from metrical phonology [7]. In this framework the relations of compound
parts can be hierarchically represented by means of metrical trees which are labeled by the
compound stress rule CSRstating:

CSR: Given constituent[AB], B is strongs if only B is further divisible, elseA.

An example is given in Figure 1. The stressed compound part isidentified by tracing thes
branches to the corresponding leaf. For the constituent decomposition collocations likeBahn+hof
(station)are not considered to be further divisible and thus do not attract stress in words like
’Haupt+[bahn+hof] (central station).
Stress location within a compound part is determined by stress-attracting affixes as inpass+’abel
(acceptable)and, if there is no such affix, by several stress constraints for simplex (i.e. monomor-
phemic) word forms. For German the most important constraints are:

• the 3-syllable window constraint stating that stress is located within the last 3 syllables of
a word,

• the Final-schwa constraint: if a final syllable is reduced, then the penult is stressed as in
Ta’pete (wallpaper), and

• the Closed-penult constraint saying that the closed penult hinders stress to move further
left (Hi’biskus; hibiscus).

A more detailed presentation of German word stress constraints including numerous exceptions
can be found in [5]. Automatic stress assignment using syllable characteristics is carried out



e.g. by means of neural nets [4] or instance-based learning [2]. The decision tree approach of
[10] additionally includes morphologic features.
In the following sections the steps of word stress assignment are introduced: the metrical com-
pound decomposition and the instance based assignment of word stress within the stressed
compound part.

2 Metrical compound decomposition

The compound analysis to identify the stressed compound part consists of a morphological
segmentation and the induction of a metrical tree for this segmentation.

2.1 Morphological segmentation

Our morphological segmentation algorithm for concatenative morphology has first been intro-
duced in [12] and requires:

• a morpheme lexiconL = {< x,m>} containing morphemesx and their classesm,

• a specification of morphotacticst : m×m−→ {0,1} constraining the morpheme class
combinations, and

• a specification of the compatibilityc : w×m−→ {0,1} of a word’s part of speech la-
bel w and the classm of word-final morpheme to avoid erroneous segmentations like
∗kombi+niere(estate kidneyinstead ofcombine).

The recursive splitting functionf : s−→ x+y places morpheme boundaries+ within stringss
if the following constraints are fulfilled:

1. x is in the lexicon, i.e.∃m :< x,m>∈ L,

2. y is further divisible or in lexicon, i.e.f (y) holds or∃m :< y,m>∈ L,

3. the morpheme class pair forx and the first segment ofy does not violate morphotactics:
t(mx,my1) = 1, and

4. the morpheme class of the lasty-segment is compatible with the word’s part of speech:
c(w,myn) = 1.

This procedure results in a concatenative flat morphological segmentationx1 . . .xn. From this
segmentation a compound decomposition[x1 . . .xi][xi+1 . . .xn] is deduced ifxi is a linking mor-
pheme or if the morpheme classesxi andxi+1 belong to the following sets respectively:

• mxi ∈ {LexicalMorph, InflectionEnding, Suffix, OrdinalEnding},

• mxi+1 ∈ {LexicalMorph, Prefix, Adverbial, VerbalParticle}.

As an example, this waybund+es+haus+halt+s+aus+schuss (federal budget committee) is
decomposed into[bund+es] [haus] [halt+s] [aus+schuss].

2.2 Metrical tree induction

From the flat compound representation derived from the preceeding segmentation a hierarchic
representation is derived by recursively splitting the compounds at coherence minima and by
pruning the resulting trees in order to merge collocations.



2.2.1 Coherence-based tree creation

The coherence of adjacent compound partsx andy is measured by means of the Likelihood
ratio of two hypotheses:

H0: x andy are independent
H1: x andy are mutually dependent

(1)

This technique has originally been used to extract collocations [3] and will therefore also be
helpful for tree pruning as is explained in the following section. It serves to compare the
hypothesis-related likelihoodsL(H0) andL(H1) for the observed frequenciesk for x+ y co-
occurrence andN−k for the occurrence ofy withoutx given the hypothesised probabilities:

• H0 (independence): P(y|x) = p = P(y|¬x)

• H1 (dependence): P(y|x) = p1 6= p2 = P(y|¬x)

The likelihoodsL(H0) andL(H1) for k andN− k given the probabilitiesp, respectivelyp1

and p2, are calculated assuming a binomial distribution, and their ratio is transformed into a
χ2 value by taking−2lnL(H0)

L(H1) as is described in [8]. This transformation allows for a gradual

interpretation of coherence: the higherχ2, the higher the dependency betweenx andy.
Given the coherence values of all adjacent compound parts a coherence tree is induced by
recursively splitting the compound at local coherence minima which is schematically shown in
Figure 1.
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Figure 1 - A metrical tree for the compound[braun][kohle][berg][bau][skandal][nudel] (brown coal min-

ing sleazebag)inferred from compound part coherences.Right: Coherence values of adjacent com-

pound parts.Left: Resulting tree by recursive splitting at local coherence minima and application of

the compound stress rule.



2.2.2 Pruning

The pruning of the tree consists in merging adjacent compound partsx andy which are identified
as collocations. Generally, collocations are characterised by:

• a high degree of coherence, and

• semi-compositionality, i.e. the meaning ofx+y cannot be composed by the meanings of
its parts:||x+y|| 6= ||x||+ ||y||.

Following [3] the high degree of coherence can simply be expressed by highχ2 values which
have been derived by the preceeding processing step.
For semi-compositionality we propose a distributional measure based on the intuition that the
lexical contexts of collocations and their final parts, e.g.of Bahnhof (station)andHof (yard)are
more distinct than for non-collocative compositions likeSporttasche (sports bag)andTasche
(bag), since the latter pair is interchangeable in more contexts than the first. To account for this
notion we adopt the information radiusIR measure, which is already established in measuring
semantic similarity [8]. It quantifies the difference between the word probability distributionp
in the context ofBahnhofas opposed toq in the context ofHof as follows:

IR(p,q) = D(p||
p+q

2
)+D(q||

p+q
2

), where (2)

D(p||q) = ∑
i

pi log2
pi

qi
. (3)

Here, the context has been defined as the word history in a bigram model trained on a German
text corpus. The Relative EntropyD(p||q) gives the number of bits additionally needed to
encode eventsi, for which the distributionp holds, by a code based onq. IR(p,q) is a symmetric
version of this divergence measure and thus a proper distance metrics. Following our intuition
it is expected that semi-compositionality yields high information radius values.
Indeed, as shown in Figure 2 significant differences forχ2 and IR values have been found in
the expected direction (two-sided Welch tests; forχ2: t74 = 3.86,α = 0.001; for IR: t318 =
1.83,α = 0.05. The IR difference is not apparent looking at the boxplots, nevertheless, the
mean IR values are 1.83 for collocations and 1.76 for non-collocative parts).
For tree pruning the following thresholds were derived on a small data sample by Simplex
optimisation: Adjacent compound parts with an IR> 1.96 and aχ2 value> 90 are considered
as collocations and therefore merged.

2.2.3 From coherence to metrical trees

As shown in Figure 1 the coherence tree is transformed into a metrical tree by assignings
(strong) andw (weak) labels to its branches following the CSR. The stressed compound part is
identified by tracing thes branches starting from the tree root.

3 Instance-based learning of word stem stress

Based on the morphological information which is returned by the procedure described in section
2.1, in some cases the stressed syllable can directly be localised within its compound part. Such
trivial cases consist of derived word forms containing stress-attracting affixes asAkzept’anz
(acceptance), and of one-syllable stems with or without unstressed affixes asHaus (house)and
Be+’geh+ung (inspection).
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Figure 2 - Left: χ2 co-occurrence values of collocations (e.g.Bahn+hof) and real compound parts (e.g.

Sport+tasche). Right: Information radius values of collocations and real compound parts.

For all other multi-syllable word stems derived by affix stripping, a syllabified canonic tran-
scription is generated by a grapheme-phoneme converter [10], and stress is located within the
stem by instance-based learning. Word stems are represented by six features derived from the
canonic transcription:

• vowel quantity∈ {reduced, short, long,0}, and

• coda type∈ {open, closed,0}

each extracted for the ultimate (final), penultimate and antepenultimate syllable. 0 is assigned
for absent values in words shorter than three syllables. Thechosen features capture the stress
constraints formulated in section 1. The dependent variable to be predicted from these features
is the absolute position of the stressed syllable relative to the ultimate and has one of the follow-
ing values:{0,1,2,3}, 0 indicating a stressed ultimate, 1 a stressed penultimateand so on. Our
training data did not contain words longer than four syllables. As an example,Lawine (deluge)
with the transcription[la.’vi:.n@] is stored as the following<feature vector, target> instance in
the memoryM: < [short, open, long, open, reduced, open], 1>.
In application, for an incoming syllabified transcription of a word stem thek nearest neighbors
are derived fromM and the stress position occuring most often among thesek objects is assigned
to the input. On a small development setk was set to 15 by Simplex optimisation. Objects were
compared by means of the weighted Hamming distanceD as follows:

D(a,b) = ∑
ai 6=bi

wi , (4)

i ranging over the elements of the objects’ feature vectorsa andb. wi is the weight of the
underlying featureX, which is set to the mutual informationI betweenX and the dependent
word stress position variableY:



wX = I(Y;X) = H(Y)−H(Y|X). (5)

H(Y) andH(Y|X) represent the entropy and conditional entropy of the word stress position,
respectively.wX therefore makes explicit the information gain for predicting word stress given
that the value of featureX is known.

4 Results

4.1 Compound level

For a sample of 700 compounds containing more than two parts the accuracy of the hierarchical
compound analysis based on the morphological segmentationand the coherence tree induction
amounted 83%. Compound stress assignment was successful in 95% of all cases.
The adequacy of the compound stress rule expressed in the conditional probability P(stress
correct|compound analysis correct) is 0.96, indicating that for theused data this rule is appro-
priate.

4.2 Word stem level

As can be seen by the mutual information values in the left plot of Figure 3 vowel quantity
is generally more influential for word stress assignment than the presence or absence of the
syllable coda. Furthermore, the characteristics of the last syllable is most influential for stress
location.
Shown in the right plot of Figure 3, in a 10-fold cross validation task on 1300 non-trivial cases,
i.e. multi-syllable word stems, thek-nearest-neighbor classifier successfully predicted the stress
location in 84% of all cases.

5 Discussion

5.1 Metrical tree induction

In this study a new procedure to automatise the induction of metrical trees has been introduced
which is based on a statistical notion of compound part coherence and the well-known com-
pound stress rule from metrical phonology. Initial resultsof 83% accuracy for tree construction
and 95% for stress assignment are encouraging. The CSR turnedout to be highly adequate for
our data.
Nevertheless, the identification of collocations for tree pruning needs further elaboration. Col-
locations indeed show significantly higherχ2 and information radius values as opposed to other
compound part pairings, but the discriminative power of these measures is not very high as can
be seen by the largely overlapping boxplots in Figure 2, especially for IR. It will be explored
in future studies whether a more sophisticated definition ofthe examined word context will
improve the contribution of the IR measure.
Rhythmic constraints as avoiding stress clashes [7] or long sequences of unstressed syllables
are not yet implemented in our procedure. The latter constraint, which might favor the pat-
ternBraunkohlebergbau’skandalnudelover the predicted’Braunkohlebergbauskandalnudel(cf.
Figure 1), can be addressed by including the concept of minorstress [5] which can be realised
by applying the CSR in parallel for subtrees originating fromthe tree root, thus applying it
separately forBraunkohlebergbauand forSkandalnudelin the example given above.
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Figure 3 - Left: Mutual information between syllable features and word stress position. apu – ante-

penult, pu – penult, u – ult, q – vowel quantity, c – coda type.Right: 10-fold cross-validation of the

KNN classifier.

Another challenge not addressed yet arises from extrinsic factors for stress shift like contrast
constructions asArbeit’nehmer und Arbeit’geber (employees and employers)as opposed to
’Arbeitgeber.

5.2 Instance-based word stem stress assignment

In contrast to previous work of the author [11] the entity chosen for stress assignment for the
current machine learning approach is the word stem and not the syllable. This difference also
implies different target values to be predicted, namely thesyllable index instead of the binary
distinctionstressedvs. unstressed. Since in contrast to compounds simplex word forms cannot
be arbitrarily long, the set of target values is still finite,and for our data limited to integers from
0 to 3. As opposed to the strictly syllable-based approach in[11] the global word pattern can
be taken into consideration for stress localisation.
Among the issues not addressed by the current approach are stress shifts (’Doktor vs. Dok’toren)
and homographs likedurchlaufenin transitive (durch’laufen) vs. intransitive (’durchlaufen) us-
age.
Even when leaving aside these cases, the word stress constraints listed in section 1 are not
sufficient to describe all stress patterns. Furthermore, numerous contradicting cases can be
found (see e.g. [5]), as for example’Abenteuer (adventure)violating the 3-syllable window
constraint. Therefore, a machine learning approach like instance-based learning is expected to
be more robust than rule-based algorithms.
In addition, due to intrinsic equivalences the chosen approach of instance-based learning can
easily be linked to fundamental research frameworks as Exemplar Theory [9, 6]. This relation
allows for generating hypotheses and models for topics likesecond language acquisition about
how speakers might stress unknown words of a foreign language.
Weighting schemes like the mutual information between features and stress location as pro-



posed here, give insight in the relative contribution of features and could be adopted for the
fine-tuning of Exemplar Theory models.
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