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Abstract: An algorithm for word stress assignment in German compousds
troduced. First, a metrical tree is automatically derivierhf adjacent morpheme
cohesion scores which are based on co-occurrence sttidigs tree is used to
identify the stressed compound part by applying the comgatress rule of metri-
cal phonology. Then the stressed syllable is identifiediwiiis compound part by
means of a k-nearest-neighbor classifier using weighteahquantity and sylla-
ble coda type features. The accuracy of the metrical congbanalysis amounted
to 83%. Compound stress assignment was successful in 95%trasd location
within multi-syllable word stems in 84% of all cases.

1 Introduction

For languages like German with a highly productive lexieahpounding tendency word stress
assignment is to be carried out in two steps: the identiboatf the stressed compound part, and
the localisation of the stressed syllable within this pate first task can be accomplished by
adopting concepts from metrical phonology [7]. In this feamork the relations of compound
parts can be hierarchically represented by means of mitrazs which are labeled by the
compound stress rule C&Rating:

CSR: Given constituenfAB], B is strongs if only B is further divisible, elsé\.

An example is given in Figure 1. The stressed compound padeigtified by tracing thes
branches to the corresponding leaf. For the constituemirdpaosition collocations likBahn+hof
(station)are not considered to be further divisible and thus do noactstress in words like
'Haupt+[bahn+hof (central station)

Stress location within a compound part is determined bgstegtracting affixes as pass+'abel
(acceptableand, if there is no such affix, by several stress constramntsmplex (i.e. monomor-
phemic) word forms. For German the most important condsaire:

¢ the 3-syllable window constraint stating that stress isted within the last 3 syllables of
a word,

e the Final-schwa constraint: if a final syllable is reducéentthe penult is stressed as in
Ta'pete (wallpaper)and

¢ the Closed-penult constraint saying that the closed pemudtens stress to move further
left (HI’biskus; hibiscus.

A more detailed presentation of German word stress constriaicluding numerous exceptions
can be found in [5]. Automatic stress assignment using lsidlaharacteristics is carried out



e.g. by means of neural nets [4] or instance-based lear@ing he decision tree approach of
[10] additionally includes morphologic features.

In the following sections the steps of word stress assigharenntroduced: the metrical com-
pound decomposition and the instance based assignmentrdf siress within the stressed
compound part.

2 Metrical compound decomposition

The compound analysis to identify the stressed compounidcpaisists of a morphological
segmentation and the induction of a metrical tree for thaggreentation.
2.1 Morphological segmentation

Our morphological segmentation algorithm for concateeatnorphology has first been intro-
duced in [12] and requires:

e a morpheme lexicoh = {< x,m >} containing morphemesand their classes,

e a specification of morphotactics mx m — {0,1} constraining the morpheme class
combinations, and

e a specification of the compatibility : w x m — {0,1} of a word’s part of speech la-
bel w and the classn of word-final morpheme to avoid erroneous segmentatiores lik
xkombi+niere(estate kidneynstead ofcombing.

The recursive splitting functiofi : s— x+ Yy places morpheme boundarie¢swithin stringss
if the following constraints are fulfilled:

1. xisinthe lexicon, i.,edm:< x,m>¢ L,
2. yis further divisible or in lexicon, i.ef (y) holds ordm:<ym>c L,

3. the morpheme class pair ferand the first segment gfdoes not violate morphotactics:
t(my,my,) =1, and

4. the morpheme class of the lgssegment is compatible with the word’s part of speech:
c(w,my,) =1.

This procedure results in a concatenative flat morpholbgegmentatiorx; . ..x,. From this
segmentation a compound decompositian .. x| [Xi+1...Xn] is deduced if; is a linking mor-
pheme or if the morpheme classesndx;. 1 belong to the following sets respectively:

e my € {LexicalMorph, InflectionEnding, Suffix, OrdinalEndihg
e My, € {LexicalMorph, Prefix, Adverbial, VerbalPartigle

As an example, this wapund+es+haus+halt+s+aus+schuss (federal budget coneujtis
decomposed intfbund+e$ [haug [halt+s| [aus+schuss

2.2 Maetrical treeinduction

From the flat compound representation derived from the piding segmentation a hierarchic
representation is derived by recursively splitting the poomds at coherence minima and by
pruning the resulting trees in order to merge collocations.



2.2.1 Coherence-based tree creation

The coherence of adjacent compound pargdy is measured by means of the Likelihood
ratio of two hypotheses:

HO: x andy are independent
H1: x andy are mutually dependent

(1)

This technique has originally been used to extract collonat[3] and will therefore also be
helpful for tree pruning as is explained in the following Bee. It serves to compare the
hypothesis-related likelihoodstHO) andL(H1) for the observed frequencidsfor x+y co-
occurrence antll — k for the occurrence of withoutx given the hypothesised probabilities:

e HO (independence): P(y|x) = p=P(y|—x)

e H1 (dependence): P(y|x) = p1 # p2 = P(y|-X)

The likelihoodsL(HO) andL(H1) for k andN — k given the probabilitiep, respectivelyp;
and p, are calculated assuming a binomial distribution, andrttadio is transformed into a
L(HO)

X2 value by taking—2lnm as is described in [8]. This transformation allows for a giad

interpretation of coherence: the highet, the higher the dependency betweeamdy.

Given the coherence values of all adjacent compound partherence tree is induced by
recursively splitting the compound at local coherence mawhich is schematically shown in
Figure 1.

coherence

braun kohle berg bau skandal nudel
compound parts

"braun kohle berg bau skandal nudel

Figure 1- A metrical tree for the compourjiraun [kohlg[berg [bau [skanda][nude] (brown coal min-
ing sleazebagjnferred from compound part coherencdight: Coherence values of adjacent com-
pound parts.Left: Resulting tree by recursive splitting at local coherenceima and application of
the compound stress rule.



2.2.2 Pruning

The pruning of the tree consists in merging adjacent comgpantsx andy which are identified
as collocations. Generally, collocations are characdrisy:

e a high degree of coherence, and

e semi-compositionality, i.e. the meaning»of y cannot be composed by the meanings of
its parts:||x+y[| 7 [Ix]] +Iyl].

Following [3] the high degree of coherence can simply be esged by highy? values which
have been derived by the preceeding processing step.

For semi-compositionality we propose a distributional suga based on the intuition that the
lexical contexts of collocations and their final parts, @igBahnhof (stationandHof (yard)are
more distinct than for non-collocative compositions I&porttasche (sports bagnd Tasche
(bag), since the latter pair is interchangeable in more contéms the first. To account for this
notion we adopt the information radilR measure, which is already established in measuring
semantic similarity [8]. It quantifies the difference beeémehe word probability distributiop

in the context oBahnhofas opposed tq in the context oHof as follows:

Rp.a) = (Pl 2+l 23Y) where @
D(pll) = Y pilogy ¢ 3)

Here, the context has been defined as the word history in arhigrodel trained on a German
text corpus. The Relative Entrody(p||q) gives the number of bits additionally needed to
encode events for which the distributiorp holds, by a code based gnIR(p,q) is a symmetric
version of this divergence measure and thus a proper destaetrics. Following our intuition
it is expected that semi-compositionality yields high mh@ation radius values.

Indeed, as shown in Figure 2 significant differencesx®and IR values have been found in
the expected direction (two-sided Welch tests; ¥8r t74 = 3.86,a = 0.001; for IR: t318=
1.83,a = 0.05. The IR difference is not apparent looking at the boxplotertheless, the
mean IR values are 1.83 for collocations and 1.76 for nofocative parts).

For tree pruning the following thresholds were derived onrels data sample by Simplex
optimisation: Adjacent compound parts with an#R1.96 and ay? value> 90 are considered
as collocations and therefore merged.

2.2.3 From coherence to metrical trees

As shown in Figure 1 the coherence tree is transformed inteetwical tree by assigning
(strong) andv (weak) labels to its branches following the CSR. The stressetpound part is
identified by tracing the branches starting from the tree root.

3 Instance-based learning of word stem stress

Based on the morphological information which is returnedigrocedure described in section
2.1, in some cases the stressed syllable can directly biskledavithin its compound part. Such
trivial cases consist of derived word forms containing srattracting affixes a8kzept'anz
(acceptance)and of one-syllable stems with or without unstressed affagtHaus (houseand
Be+'geh+ung (inspection)
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Figure2 - Left: x? co-occurrence values of collocations (eBghn+ho} and real compound parts (e.g.
Sport+taschg Right: Information radius values of collocations and real compmbparts.

For all other multi-syllable word stems derived by affix gping, a syllabified canonic tran-
scription is generated by a grapheme-phoneme convertgrda@ stress is located within the
stem by instance-based learning. Word stems are repredeytax features derived from the
canonic transcription:

e vowel quantitye {reduced, short, lond)}, and

e coda typec {open, closed)}

each extracted for the ultimate (final), penultimate anepernultimate syllable. 0 is assigned
for absent values in words shorter than three syllables. chlesen features capture the stress
constraints formulated in section 1. The dependent varitbbe predicted from these features
is the absolute position of the stressed syllable relatitbe ultimate and has one of the follow-
ing values:{0,1,2,3}, 0 indicating a stressed ultimate, 1 a stressed penultiarateso on. Our
training data did not contain words longer than four sykablAs an exampld,awine (deluge)
with the transcriptionla.'vi:.n@] is stored as the following:feature vector, targetinstance in
the memoryM: < [short, open, long, open, reduced, op€n>.

In application, for an incoming syllabified transcriptiohecoword stem thé nearest neighbors
are derived fromM and the stress position occuring most often among tkebgects is assigned
to the input. On a small development katas set to 15 by Simplex optimisation. Objects were
compared by means of the weighted Hamming distdhes follows:

D(a,b) = Wi, 4)

I ranging over the elements of the objects’ feature vecioasdb. w; is the weight of the
underlying featureX, which is set to the mutual informatidnbetweenX and the dependent
word stress position variab¥



wx = 1(Y;X)=H(Y)—H(Y[X). (5)

H(Y) andH (Y|X) represent the entropy and conditional entropy of the waresstposition,
respectivelywy therefore makes explicit the information gain for predtgtivord stress given
that the value of featur¥ is known.

4 Resaults

4.1 Compound level

For a sample of 700 compounds containing more than two gegtadcuracy of the hierarchical
compound analysis based on the morphological segmentatidthe coherence tree induction
amounted 83%. Compound stress assignment was successhdbinfall cases.

The adequacy of the compound stress rule expressed in tlitiooal probability P(stress
correctcompound analysis correct) is 0.96, indicating that foruked data this rule is appro-
priate.

4.2 Word stem level

As can be seen by the mutual information values in the left pld-igure 3 vowel quantity
is generally more influential for word stress assignmeni ttiee presence or absence of the
syllable coda. Furthermore, the characteristics of thiesidtable is most influential for stress
location.

Shown in the right plot of Figure 3, in a 10-fold cross validattask on 1300 non-trivial cases,
i.e. multi-syllable word stems, tHenearest-neighbor classifier successfully predictedttess
location in 84% of all cases.

5 Discussion

5.1 Maetrical treeinduction

In this study a new procedure to automatise the inductionetfioal trees has been introduced
which is based on a statistical notion of compound part et and the well-known com-
pound stress rule from metrical phonology. Initial resoft83% accuracy for tree construction
and 95% for stress assignment are encouraging. The CSR touhéal be highly adequate for
our data.

Nevertheless, the identification of collocations for treening needs further elaboration. Col-
locations indeed show significantly highet and information radius values as opposed to other
compound part pairings, but the discriminative power oséhmeasures is not very high as can
be seen by the largely overlapping boxplots in Figure 2, @sfie for IR. It will be explored

in future studies whether a more sophisticated definitiothefexamined word context will
improve the contribution of the IR measure.

Rhythmic constraints as avoiding stress clashes [7] or l@ogiences of unstressed syllables
are not yet implemented in our procedure. The latter coms$trahich might favor the pat-
ternBraunkohlebergbau’skandalnud®ler the predictetBraunkohlebergbauskandalnudef.
Figure 1), can be addressed by including the concept of nsimess [5] which can be realised
by applying the CSR in parallel for subtrees originating frtma tree root, thus applying it
separately foBraunkohlebergbaand forSkandalnudein the example given above.
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Figure 3 - Left: Mutual information between syllable features and wordsstigosition. apu — ante-
penult, pu — penult, u — ult, g — vowel quantity, c — coda tyRéght: 10-fold cross-validation of the
KNN classifier.

Another challenge not addressed yet arises from extriasiofs for stress shift like contrast
constructions ag\rbeitnehmer und Arbeit'geber (employees and employassppposed to
'Arbeitgeber

5.2 Instance-based word stem stress assignment

In contrast to previous work of the author [11] the entity hio for stress assignment for the
current machine learning approach is the word stem and edaythable. This difference also
implies different target values to be predicted, namelysyiable index instead of the binary
distinctionstressedss. unstressedSince in contrast to compounds simplex word forms cannot
be arbitrarily long, the set of target values is still finéed for our data limited to integers from
0 to 3. As opposed to the strictly syllable-based approaghlhthe global word pattern can
be taken into consideration for stress localisation.

Among the issues not addressed by the current approachess shifts’Doktor vs. Dok’torer)
and homographs likdurchlaufenn transitive urch’laufer) vs. intransitive durchlaufer) us-
age.

Even when leaving aside these cases, the word stress dptsstisted in section 1 are not
sufficient to describe all stress patterns. Furthermorejemaus contradicting cases can be
found (see e.g. [5]), as for exampkebenteuer (adventureyiolating the 3-syllable window
constraint. Therefore, a machine learning approach lig&ice-based learning is expected to
be more robust than rule-based algorithms.

In addition, due to intrinsic equivalences the chosen aggr®f instance-based learning can
easily be linked to fundamental research frameworks as Bb@riheory [9, 6]. This relation
allows for generating hypotheses and models for topicssdend language acquisition about
how speakers might stress unknown words of a foreign larguag

Weighting schemes like the mutual information betweenuiest and stress location as pro-



posed here, give insight in the relative contribution oftde@s and could be adopted for the
fine-tuning of Exemplar Theory models.
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