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Abstract: We introduce a new language-independent procedure for grapheme-phoneme
conversion, syllabification, and word stress assignment. Grapheme-phoneme conversion
and syllabification is carried out by means of fallback sequences of decision trees trained
on varying context sizes. Word stress is determined within an analogy-based framework by
means of a Bayes classifier. Evaluation results on six languages are presented. Furthermore,
it is described, how the tool is implemented and to be accessed as a web service that is freely
available for academic research.

1 Introduction

Feasible approaches for language-independent grapheme-phoneme conversion (G2P), syllabification
(SYL) and word stress assignment (WSA) are necessarily constrained with respect to the method and the
features from which the target values are to be inferred. Concerning the method, data-driven machine-
learning approaches are preferably to be chosen, since they can much more easily be adapted to new
languages than rule-based expert systems. Since in multilingual G2P processing commonly no elaborated
modules for higher-level (e.g. morphological) analyzes are available for all languages, the feature choice
needs to be restricted to basic features as letters for G2P and symbol-phonetic object characteristics as
phonemes for SYL and syllable properties for WSA.

Grapheme-phoneme conversion Following [1] common machine-learning approaches to map gra-
phemes to phonemes can be divided into (a) techniques based on local classification, (b) learning by
analogy, and (c) probabilistic methods. Local classification techniques are trained to locally map a letter
within its current environment to the corresponding target phoneme. This task is for example carried out
by simple look up in tables that contain the shortest grapheme contexts for unique G2P mappings [2],
neural networks [3, 4], [5, model “SIE”] or decision trees [6, 7, 8], [5, model “Pfitzinger”]. Especially
decision trees allow for easy integration of higher-level morphological and part of speech information
[8, 9] if available. In learning by analogy the G2P output is derived from similarities of the word to be
transcribed or parts of it with entries stored in the pronunciation dictionary [10]. Among the probabilistic
approaches are Hidden Markov models (HMM) treating letters as observations and phonemes as state
labels [11], and joint sequence models allowing for more flexible segmentations of the letter and phone
strings [1]. The G2P outcome then is given by the best path through the model. Opposed to the local
classification technique in these approaches the G2P outcome for a word is optimized globally.

Syllabification Syllabification can be carried out on the orthographic or on the transcription level. As
for G2P it can be divided into local classification, learning by analogy, and probabilistic methods. Local
classification comprises the usage of neural networks [12] and classification trees [13]. A syllabification
by analogy algorithm has been developed by [14] who adopt the syllabification of the most similar sub-
strings in a pronunciation dictionary to a word or its transcription to be syllabified. Among probabilistic
methods HMMs are employed e.g. by [15, 16].



Lang. Dictionary Size Syllab. Stress H(Gra×Pho) I(Gra;Pho) C(Gra;Pho)
deu Phonolex Core [21] 62.7 K no yes 5.85 3.45 0.59
eng Celex [22] 52.2 K yes yes 5.94 2.97 0.50
hun KORNAI corpus [23] 14.5 K no fixed 5.24 4.37 0.83
ita Festival [24] 41.0 K yes yes 4.82 3.64 0.76
nld Celex [22] 118.0 K yes yes 5.53 3.37 0.61
pol PJWSTK [25] 31.7 no fixed 4.98 4.29 0.86

Table 1 - Overview over the used training dictionaries. The languages are expressed in ISO 639-3. Three of

the dictionaries do not contain syllabification. Word stress is fixed for Hungarian and Polish. Language depen-

dent grapheme-phoneme pairing entropies, mutual informations of phonemes and graphemes, and G2P mapping

consistencies [26] were calculated on the aligned dictionaries. These measures are explained in section 6.

Word stress assignment Whereas for G2P and SYL the choice of the prediction targets (phonemes,
syllable boundaries) is uniform across different approaches, word stress prediction can be addressed to
each syllable in separation yielding a categorical output for each syllable (e.g. stress vs. unstressed; [5,
model “IPS”]) or to the word as a whole returning one or more indexes of stressed syllables [17]. As
for G2P and SYL also WSA approaches can be divided into local classification, learning by analogy and
statistical approaches. Again neural nets [17, 3] and decision trees [5] are popular local classifiers for this
purpose. Probabilistic approaches often treat WSA as a part of G2P simply by extending the set of target
phonemes by stressed vowels, so that G2P additionally distinguishes between stressed and unstressed
phonemes as in the HMM approach of [18]. Leaning by analogy is backed up by phonetic pseudo word
production studies in which subjects take over stress patterns of “phonetically similar” words of their
language. In [19] an extensive overview on studies on Dutch, English, and German is given. “Phonetic
similarity” at least in these three languages generally refers to syllable weight patterns. The weight of a
syllable depends on the syllable rhyme, more specific on the vowel quantity and the presence or absence
of a coda. [20] propose an instance-based learning approach assigning to new words the word stress of
those stored entries that have the most similar syllable pattern. This pattern derived from the last three
syllables is defined on three different levels of abstraction: syllable weight, rhyme transcription, and
plain transcription. The features are weighted by their information gain for word stress assignment.

Current approach Referring to the method taxonomy above our language-independent approach con-
sists of local classification for G2P and syllabification and analogy-driven learning for word stress assign-
ment. After an overview over the training data and its preprocessing we introduce each of the modules
in greater detail, present their performances, and explain how they are integrated and accessible as a web
service.

2 Preparation of the training data

After separation of transcription, syllabification and word stress information the transcription was aligned
to the letters by means of the PermA aligner [8]. In short, PermA aligns the letter sequence v and its
transcription w by minimizing their Levenshtein distance in terms of the minimum edit costs to transform
v into w. The edit costs c for the edit operations substitution, deletion and insertion are defined in terms of
conditional probabilities reflecting co-occurrences between letters and phones (including empty phones)
as follows:

• Substitution: c(vi,w j) = 1−P(w j|vi)

• Deletion: c(vi, ) = 1−P( |vi)

• Insertion: c( ,w j) = 1−P(w j| )

Syllabification is stored as a sequence of indexes of syllable final phonemes. Word stress is stored as an
integer pointing to the index of the major-stressed syllable. The lexicon entry



checkerboard; ’ tS e . k @ . b O: d

thus was split into:

• aligned transcription
c h e c k e r b o a r d
tS e k @ b O: d

• syllabification: 2, 4

• word stress: 1

3 Grapheme Phoneme Conversion

For G2P conversion we extended the decision tree approach of [8] to cover grapheme contexts and
phoneme histories of variable length. For each window and history length we trained an individual C4.5
decision tree [28] with the corresponding feature vectors. For the symmetric grapheme contexts the
window lengths were successively reduced at both ends from 9 to 0, the length of the phoneme histories
was reduced from 1 to 0. The pruning confidence level was set to 0.25, and the trees were designed to
return an “unknown” UNK label for all cases they cannot generalize to.
In analogy to the table look up approach of [2] these trees are than applied as a fallback sequence taking

grapheme context and phoneme history of decreasing size into account. The tree sequence procedure
is illustrated in the subsequent pseudo code. Starting with the most specific (largest) context (window
lengths lwmax and hhmax, respectively), the feature windows are successively shortened until a mapping
to a phoneme is found. First the phoneme history length lh is shortened from 1 to 0, then the grapheme
window length lw is shortened at both ends (thus by stepsize 2) from 9 to 1. As soon as a tree trained
on the current context size does not return UNK, its output is added to the conversion result and the next
grapheme is processed.

function applyTreeSequence(lwmax, lhmax)

lw← lwmax, lh← lhmax, ans← UNK
while ans = UNK ∧ lw ≥ 1

classifier← tree trained on features in windows of lengths lw, lh
ans← apply classifier
if lh > 0: lh← lh−1; else lw← lw−2

return ans

The G2P module outputs the corresponding transcription of the input words in the language-specific
SAMPA [27] encoding.

4 Syllabification

Like G2P also syllabification is implemented as a tree sequence successively taking decreasing con-
text into account. This time the context is formed by a symmetric phoneme window centered on the
phoneme for which is to be decided whether or not it is syllable-final. lwmax and lhmax were set to 7 and
0, respectively (thus no boundary history was taken into account).
To ensure that exactly one syllable boundary is placed between each pair of subsequent syllable nuclei,

first these nuclei are identified in the transcription output of the G2P module (example: coherence – / k
@U h I@ r @ n s /). For each consecutive nucleus pair (e.g. @U and I@) moving from left to right the
tree sequence is applied on the phoneme window centered on the respective phoneme (first @U, then h)
until a boundary is reported or the right nucleus is reached. If no boundary has been signaled between the
two nuclei, a fallback boundary is placed in front of the sonority minimum in the transcription substring
(in this case h). If the sonority minimum is a plateau, the boundary is shifted rightwards towards the last
element of this plateau. This heuristic serves to avoid violations of phonotactics.
For German, Hungarian, and Polish only the fallback boundary placement was carried out, since the

used dictionaries did not contain syllabification information.



5 Word stress assignment

For word stress assignment we have developed a Bayes classifier within a learning by analogy frame-
work. In the training phase the transcriptions in the lexicon are mapped onto codes of different levels
of abstraction most of them preserving the words’ syllable weight pattern. For the resulting codes the
probability distribution of word stress positions is estimated. Furthermore, similar to [20], for each
code mapping operation the mutual information between its code outputs and the word stress location is
calculated.
In application an incoming word is mapped onto the same abstract representations as described for

the training phase. A Bayes classifier predicts the most probably stress position based on the stress
distributions for each of the abstractions and the mutual information of the corresponding code operation.

5.1 Code operations

The syllabified input transcription is successively transformed into five increasingly abstract codes. The
transformations are ordered, and each transformation operates on the output of the preceding one. The
transformations are illustrated given the syllabified input transcription / k @U . h I@ . r @ n s / (coher-
ence) returned by the G2P and syllable module.

t1 replace all consonants by %C: / %C @U . %C I@ . %C @ %C %C /

t2 reduce %C-sequences within a syllable to single %C: / %C @U . %C I@ . %C @ %C /

t3 remove all onset consonants: / @U . I@ . @ %C /

t4 replace all syllable nuclei; reduced vowels and syllabic consonants by %R, long vowels and diph-
thongs by %VV, all others by %V: / %VV . %VV . %R %C /

t5 remove all coda consonants: / %VV . %VV . %R /

Operations t1 to t4 preserve the syllable weight pattern of the transcription.

5.2 Bayes classification

5.2.1 Probability and weight estimation

In the training phase each transcription of the lexicon was transformed into five keys by the operations
t1...5 to calculate the co-occurrence frequencies of these keys k with the word stress position s of the
original transcription. From these co-occurrence frequencies smoothed by absolute discounting the con-
ditional probabilities P(k|s) were estimated. Furthermore, the word stress prior probability P(s) was
calculated.
In order to weight the contributions of the code operations, for each operation ti the mutual information

Ii between its outputs Ti and the word stress positions S was calculated. The mutual information values
were then transformed into weights ui by normalizing them to sum up to 1.

Ii = H(S)−H(S|Ti)

ui =
Ii

∑ j I j

H(S) is the entropy of word stress in the training dictionary, and H(S|Ti) the word stress entropy after
application of the i-th transformation in the lexicon. The higher Ii the more the word stress is determined
by the outcomes of transformation ti.



5.2.2 Application

The location of the word stress ŝ in a transcription trs results from maximizing the following term:

ŝ = argmax
s

[
5

∏
i=1

(ui ·P(ti(trs)|s)) ·P(s)]

ti(trs) stands for the i-th transformation of the input transcription. P(ti(trs)|s) is the probability that the
output of ti is an abstract pattern of words with stress location s. ui is the weight associated to the i-th
transformation operation, and P(s) is the stress location prior.

6 Results and Discussion

We evaluated our modules by 10-fold cross validation. Figures 1 and 2 display the word error rates (A)
for G2P, SYL, and WSA taken together, (B) for G2P only, (C) for SYL only, and (D) for WSA only.

Figure 1 - A (left): Word error rate for G2P, syllabification, and stress assignment taken together. B (right): Word

error rate for transcription only.

Figure 2 - C (left): Word error rate for syllabification. D (right): Word error rate for stress assignment.

It can be seen that the performance of our modules is highly language-dependent. While G2P performs
very well for Hungarian, Italian, and Polish, results are poorer for German, English, and Dutch. These
differences are due to much more systematic grapheme-phoneme correspondences in the first three lan-
guages. For Polish for example orthography follows the phonetic principle (zasada fonetyczna) [29, p.



85], that requires a stable fixed relation between sound and grapheme. [26] proposed a dictionary consis-
tency measure C(Gra;Pho) for the mapping from set of grapheme units Gra to the set of phoneme units
Pho as follows:

C(Gra;Pho) =
I(Gra;Pho)

H(Gra×Pho)

It’s the quotient of the mutual information I(Gra;Pho) = ∑x∈Gra ∑y∈Pho p(x,y) log2
p(x,y)

p(x)p(y) between
grapheme and phoneme units resulting from dictionary alignment.
H(Gra×Pho) =−∑x∈Gra,y∈Pho p(x,y) log2 p(x,y) is the entropy of the graphone alphabet, i.e. the set

of grapheme-phoneme unit pairings. In line with the observed performance differences, the last three
columns in table 1 report higher consistency values (resp. lower entropy and higher mutual information
values) for languages with easy-to-learn stable G2P relations.
While syllabification performs reasonably well there is still room for improvement for word stress as-

signment. A major shortcoming of our language-independent approach ignoring higher level morpho-
logical features is, that it does not allow for identifying compounds and thus stressed parts within these
compounds. While in several languages in simplex forms stress is rather to be located within the range
of the last three syllables of a word [19], it commonly occurs earlier in compounds when non-final com-
pound parts receive the major stress. As can be seen in Figure 2 this is a major issue in Dutch and German
with highly productive compounding tendencies.
In order to increase the performance of our converter in application we extended it by language-dependent

G2P postprocessing modules, that account for example for regressive voice and place of articulation as-
similation processes in Hungarian [30].

7 Web service

As a contribution to the ‘Common Language Resources and Technology Infrastructure” (CLARIN)
project, we developed web services that provide the functionality of tools like the converter introduced
in this paper. Those web services wrap different functionality of command line tools, and allow for easy
access to this software, without the need of installing it locally on the users machine. In this scenario the
“user” might be a human or another web service that wants to access a particular piece of software.
In the CLARIN context the view on web services is rather process oriented, i.e. major efforts are

put into implementing work flow engines, that allow for chaining different services [31]. We therefore
implemented our web services as RESTful remote procedure calls (RPC). The reference implementation
“Java API for RESTful Web Services” (JAX-RS) was used to implement the web service wrapper around
the underlying grapheme-to-phoneme command line tool. We overload the POST operation, a standard
HTML operation, that serves as an envelope for the data that has to be passed to the web service while
remaining compliant with the RESTful idea [32].
To allow the automatic call or easy manual integration of our RESTful web services, we describe all web

services both technically in the Web Application Description Language (WADL) and semantically in the
Common Meta Data Infrastructure CMDI [33] format. The WADL format is a machine readable format
describing the technical aspects of a certain web service. This allows programs or chaining engines to
generate the call to the WADL described web service automatically on the technical side. The description
in the CMDI format, based on components that are registered in the public component registry [34],
allows for further automatic interpretation of the possible parameters that a web service takes. Those two
descriptions can then be used to automatically integrate our G2P tool to any infrastructure or program
that understands these descriptions or use it to integrate them manually in existing software. Examples
of workflow engines in which our web services can easily be integrated are WebLicht [35] and Taverna
[36]. Further information how to access the web services runG2P for the introduced converter can be
found at: http://clarin.phonetik.uni-muenchen.de/BASWebServices/services/help
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