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Abstract

In this study a simple method for automatic correction oft{udir
speech corpora is presented, which works as follows: llyittavo or
more already available part-of-speech taggers are apphetthe data.
Then a sample of differing outputs is taken to train a classib predict
for each difference which of the taggers (if any) deliveleal¢orrect out-
put. As classifiers we employed instance-based learning,ad&cision
tree and a Bayesian classifier. Their performances ranged $0.1 %
to 67.3 %. Training on the automatically corrected data fjnialad to
significant improvements in tagger performance.

1 Introduction

Part-of-speech (POS) taggers can be divided in rule-bastdata-driven sys-
tems. Rule-based approaches like ENGTWOL [1] operate oncépuaries
containing word forms, their POS tags, and syntactic infdiom, and b) con-
text sensitive rules to derive the correct tags during appttn. The most com-
mon data-driven approaches are Markov taggers [2], MaxirBatropy based
taggers [3], and Transformation-based taggers [4].

Compared to rule-based taggers, data-driven taggers hawedll-known
advantages of fast development, noise robustness, anabigagndependence.
However, a huge amount of training material is needed fdr thesign to face
two major problems:

e context-dependent POS assignment

e tagging of words unseen in the training data (out-of-votatpuOOV
cases)

Increasing the amount of training data leads to more r&iabunts to dis-
ambiguate context-dependent wordform-POS relations aigtitmeduce the
number of OOV cases in application. The latter issue howeeeds more
elaboration within the context of tHarge number of rare events distribution
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(see e.g. [5], [6]), which is outside the scope of this stuthpwever, some
observations about type coverage are presented in section 3

Since manually tagging a training corpus of reasonable (si@amprising
several 100 K or more tokens) is very time expensive, an aaifisation of this
work would be appealing.

2 Data and labelling

The data used in this study comprises parts ofEhpean Corpus Initiative
Multilingual Corpus 1 containing German newspaper texts (about 380 K word
tokens), which were pre-tagged by two already establishggetrs for German:
the TnT tagger [7] (TnT) and the Tree tagger [8] (STT) using 8tuttgart-
Tubingen tag set. Both taggers face the OOV problem by éaurédxamining
string suffixes of word forms which, in German, provide imf@tion about
the word class. STT combines the Markov framework with a slenitree
classifier.

For a sample of 20% of the total data, two experts labellec¢asdes of
differing POS outputs marking whether STT, TnT or none ofithgelded the
correct output. Note that this procedure is based on theligying assumption
that all instances of tagger agreements are tagged cgrrectl

3 Corpus size dependence of a tagger’s performance

3.1 The Tagger

The data-driven tagger used in this study (SVT) is a gersatadin of a basic
Markov tagger, and was presented in greater detail in [9id3dly, the aim to
estimate the most probable tag sequefiggven the word sequend® can be
formulated as follows:

T = arg max {P(T\W)]

To estimateP (T'|W), Bayes formula is applied, the constant denominator
is omitted, and two simplifying assumption are made to gkdibse counts for
probability estimations:

e The probability of wordw; depends only on its tag
e The probability of tag; depends only on a limited tag histaristory;
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This leads to the following formula:

n
T = arg max [HP(ti\t-histor%)P(wi]ti) .
1=

For tagger SVTP(t;|t-history;) is replaced by a linearly interpolated tri-
gram model andv; is replaced by a list of word representations leading to a
reformulation ofP(w;|t;). Our model is thus given by

T = argmax{
t1...tn

2

n
1
Pl E ujP(tZ-|t—historyZ~j) E ka(ti|W—representati0{k)].
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1

The utilised word representations consist of string suifieé different
lengths determined by successor variety peaks (cf. [10]).

3.2 Corpus size effects on tagging performance

To examine the influence of the amount of training data ongaggrformance,
the STT-tagged training corpus token size was increase@ K dteps ranging
from 10 K to 370 K. For each size the SVT tagger was tested ondadw
constant test set after the training.

As can be seen in Figure 1 the performance curve (left-haie) $vllows
the type coverage curve giving the percentage of types itedtedata already
seen in training (right-hand side) quite closely. The siaepease of both func-
tions for 370 K tokens can be attributed to the approachirsggges of training
and test part within the text corpus resulting in a largempprton of shared
vocabulary and text style features.

It can be concluded, that for the given amount of trainingemiat our tag-
ger's performance still depends heavily on the choice ahitng and test sets
and therefore does not yet show an asymptotical behavidis.fifiding clearly
indicates the need for more data.

4 Efficient data acquisition

Manual POS tagging is a time consuming task, and the same ffoidau-
tomatic tagging followed by manual correction. Hence aromatisation of
tagging as well as of correction would be highly desirableur @pproach to
these automatisations is described in the subsequenrsecti
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Figure 1:Left: Performance as a function of training data siRight: Type
coverage in the test data as a function of training data size.

4.1 Basicidea

The development phase of our corpus creation model comsitsee steps:

1. Aninitial POS corpus is generated by applying two or mdnexsaly avail-
able POS taggers on raw text data.

2. For a sample of differing tagging outputs the correctralitves are
marked manually.

3. A classifier C is trained on this labelled sample in ordepredict the
correct tagging alternative.

The manual effort required by step 2 is very low compared touabhPOS
corpus generation or correction since it is restricted ffeding outputs only.
Note that instances of tagger agreements are assumed torbetcd his issue
is discussed later on.

The creation of new POS data in the application phase simgigists of
the following steps:

1. Raw text is tagged by the same taggers used in the devehbminase.

2. Foreachtagging disagreement the trained classifier @selsahe correct
tag alternative (if any).
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5 Identification of the correct tagging alternative

Three supervised machine learning methods were trainech@nmianually
judged output differences of the taggers STT and TnT: amtst-based ap-
proach, a C4.5 decision tree and a Bayesian Classifier.

Features and targets The feature vectors of size 8 consist of the tag history
of length 2 of both taggers (4 features) as well as the obsenvevhich of the
taggers (if any) made a mistake within this history (2 feegirand the current
output of the taggers (2 features).

The classification targetse C are “STT-output is correct”, “TnT-output is
correct”, and “none of the outputs is correct”.

Instance-based learning For training an instance-based classifi&the fea-
ture vectors were binarised. We usetiearest neighbour classification with k
setto 15. In application, the classification functipfor feature vector, given
the k nearest training vectorsey, . . ., zx } is shown in the following equation.

f(acq) = argmaXZwié(c,f(xi)).

o(c, f(x;)) is the Kronecker function being if class ¢ equals the class
f(x;) of training vectorz;, and0 elsewisew; weights the contribution of each
neighbourz; decreasing quadratically with respect to its distathtez,:

1
d(w(b mi)Q ’

w; =

Ford the Jaccard distance between binary vectors was chosendsyinre
the proportion of differing non-zero bits.

C4.5 decision tree In a C4.5 decision tre®T [11], each feature vector is
represented as a path from the root to the leaf connectedt teeittor’s class.
Each non-terminal node is associated with an attributerdotpto which the
set is further divided. During the recursive branching &f tikee in the training
procedure the choice of the attributemost suited to split the set of objects is
guided by a measure closely related to information gain kwhiges the mean
reduction of the amount of bits needed to encode the objassajiven that
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the value ofA is known. The branching stops if all objects belong to theesam
class or cannot be further distinguished by their featugesequent recursive
pruning to avoid over-adaption is guided by the comparisbthe expected
error rate of a subtree and the error rate expected aftaviidension to a leaf.

Bayesian Classifier A Bayesian classifieBC' returns the clas§ (x4) with

the highest estimated probability given the feature vectotonsisting of the
featuresr,, . .., x4, Which can be reformulated by Bayes formula, omission
of the constant denominator, and the simplifying assumptibfeature inde-
pendence as shown below:

flzq) = arg max [P(clzq)]
n
= P
fleg) = argmax[P 21:[1 (qilc)]

6 Results
In this study we have evaluated

¢ the capability of our models to predict the correct tag aléve, and

¢ the performance differences of the SVT tagger trained optedagged
and the automatically corrected data.

6.1 Correcttag prediction

The classifiers’ performances were compared by ten-foldsevalidation. A
baseline modeB L was added, which simply adopted the output of that tagger,
which performed better for the training data.

The left part of Figure 2 shows the mean performances of thssiflers
in predicting the correct tag alternative. The performanemge from 49.3 %
(baseline model) to 67.3 % (C4.5 decision tree). The basetindel is sig-
nificantly outperformed by all other models (Wilcoxon tespaired samples,
p = 0.002), and the decision tree significantly outperforms all otmerdels.
No significant performance difference was found for the Baglassifier and
the K-Nearest-Neighbours classifier.
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Figure 2: Left: Mean performances of the models in identifying the correct
tagger output. DT: C4.5 decision tree, BAY: Bayes classifiek: K-Nearest-
Neighbours classifier, BL: baseline classifier.: “significantly better than”
(Wilcoxon test of paired sampleg,= 0.002). Right: Tagging Performances
based on the corrected training corpus CC and on the untedresference RC.

6.2 Effects of automatic corpus correction

For examination whether or not the automatic correctiomefiorpus increases
the performance of our SVT tagger the reference corpus (Rf)given by
the STT tagger output, and the corrected corpus (CC) by aqgpppe C4.5
classifier on the tagging differences of STT and TnT. For tBiatgs wrong”-
classifications the STT output was chosen by default.

Improvements of tagger performance. The SVT tagger was tested on ten
subsets from that part of the corpus which was manually lkedbe¢b develop
the tag-correction classifiers. SVT performed significatwbtter after being
trained on CC (excluding the test corpus) than after trgimin RC (Wilcoxon
test of paired samples, p = 0.004). The mean performancesraet96.4%
and 96.0% respectively. These results can be found in the payt of Figure
2.

Data consistency vs. correctness.RC is less correct than CC, but at the same
time it is expected to be more consistent than CC, since et on a single
tagger, while CC is based on two. To test whether consistencgrrectness of
the training data leads to a better tagging performance anéed out two ten-
fold cross validations for the SVT tagger trained and teste€C and on RC.
It turned out, that again SVT performed slightly but nevel#iss significantly
better on CC (mean: 96.5%) than on RC (mean: 96.3%; Wilcossinof paired



7 DISCUSSION 8

samples, p = 0.002). This result shows the slight supeyiofittorrectness to
consistency.

7 Discussion

Simplifying assumption We have not examined yet, whether or not the sim-
plifying assumption stating that both taggers deliver tbeact output when-
ever they agree, is too strong. In any case the assumptidd beuweakened
by using more taggers for data labelling and/or by usingeegwhich consid-
erably differ in their mode of operation.

Effects of automatic corpus correction The results show that although the
performances in predicting the correct tag alternativestilequite poor (less
than 70 %), the accuracy of a tagger trained on the autonfigticarrected
training data increases significantly. This promising firgdinakes further work
on improving tag alternative prediction worthwhile.

Acquiring new POS training material As could be seen in section 3, POS
tagging requires large training corpora. Once given a cqaIrection sys-
tem like the one presented in this study, POS training nadtsitinply can be
augmented by double pre-tagging additional text and ifléngj the correct al-
ternative. Sentences containing “Both tags wrong”-deanssicould be dropped
or corrected manually.

Boosting The method described here could be transformed into a kindrgf
simple boosting algorithm combining the two weaker classfiSTT and TnT
to form a stronger one just by replacing the classes intredlirt section 5 with
the correct POS tags. Further studies are needed to testidlity apf such an
approach.

Further Applications The data correction procedure proposed in this study
is principally not bound to a specific domain as POS taggirtgcbuld be used
whenever at least two labelling systems are already avaikaid their errors
can be identified. One alternative domain would be corrgditraining corpus
for grapheme-to-phoneme conversion.
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