
1 INTRODUCTION 1

Automatic correction of part-of-speech corpora

Uwe Reichel Lia Saki Bucar Shigemori

Institute of Phonetics and Speech Processing (IPS), Munich, Germany
{reichelu|lia}@phonetik.uni-muenchen.de

Abstract

In this study a simple method for automatic correction of part-of-
speech corpora is presented, which works as follows: Initially two or
more already available part-of-speech taggers are appliedon the data.
Then a sample of differing outputs is taken to train a classifier to predict
for each difference which of the taggers (if any) delivered the correct out-
put. As classifiers we employed instance-based learning, a C4.5 decision
tree and a Bayesian classifier. Their performances ranged from 59.1 %
to 67.3 %. Training on the automatically corrected data finally lead to
significant improvements in tagger performance.

1 Introduction

Part-of-speech (POS) taggers can be divided in rule-based and data-driven sys-
tems. Rule-based approaches like ENGTWOL [1] operate on a) dictionaries
containing word forms, their POS tags, and syntactic information, and b) con-
text sensitive rules to derive the correct tags during application. The most com-
mon data-driven approaches are Markov taggers [2], MaximumEntropy based
taggers [3], and Transformation-based taggers [4].

Compared to rule-based taggers, data-driven taggers have the well-known
advantages of fast development, noise robustness, and language independence.
However, a huge amount of training material is needed for their design to face
two major problems:

• context-dependent POS assignment

• tagging of words unseen in the training data (out-of-vocabulary OOV
cases)

Increasing the amount of training data leads to more reliable counts to dis-
ambiguate context-dependent wordform-POS relations and might reduce the
number of OOV cases in application. The latter issue howeverneeds more
elaboration within the context of thelarge number of rare events distribution

2 DATA AND LABELLING 2

(see e.g. [5], [6]), which is outside the scope of this study.However, some
observations about type coverage are presented in section 3.

Since manually tagging a training corpus of reasonable size(comprising
several 100 K or more tokens) is very time expensive, an automatisation of this
work would be appealing.

2 Data and labelling

The data used in this study comprises parts of theEuropean Corpus Initiative
Multilingual Corpus 1 containing German newspaper texts (about 380 K word
tokens), which were pre-tagged by two already established taggers for German:
the TnT tagger [7] (TnT) and the Tree tagger [8] (STT) using the Stuttgart-
Tübingen tag set. Both taggers face the OOV problem by further examining
string suffixes of word forms which, in German, provide information about
the word class. STT combines the Markov framework with a decision tree
classifier.

For a sample of 20% of the total data, two experts labelled allcases of
differing POS outputs marking whether STT, TnT or none of them yielded the
correct output. Note that this procedure is based on the simplifying assumption
that all instances of tagger agreements are tagged correctly.

3 Corpus size dependence of a tagger’s performance

3.1 The Tagger

The data-driven tagger used in this study (SVT) is a generalisation of a basic
Markov tagger, and was presented in greater detail in [9]. Basically, the aim to
estimate the most probable tag sequenceT̂ given the word sequenceW can be
formulated as follows:

T̂ = arg max
T

[

P (T |W)
]

.

To estimateP (T |W), Bayes formula is applied, the constant denominator
is omitted, and two simplifying assumption are made to get reliable counts for
probability estimations:

• The probability of wordwi depends only on its tagti

• The probability of tagti depends only on a limited tag historyt-historyi

4 EFFICIENT DATA ACQUISITION 3

This leads to the following formula:

T̂ = arg max
t1...tn

[

n
∏

i=1

P (ti|t-historyi)P (wi|ti)
]

.

For tagger SVTP (ti|t-historyi) is replaced by a linearly interpolated tri-
gram model andwi is replaced by a list of word representations leading to a
reformulation ofP (wi|ti). Our model is thus given by

T̂ = arg max
t1...tn

[

n
∏

i=1

1

P (ti)

∑

j

ujP (ti|t-historyij)
∑

k

vkP (ti|w-representationik)
]

.

The utilised word representations consist of string suffixes of different
lengths determined by successor variety peaks (cf. [10]).

3.2 Corpus size effects on tagging performance

To examine the influence of the amount of training data on tagger performance,
the STT-tagged training corpus token size was increased in 10 K steps ranging
from 10 K to 370 K. For each size the SVT tagger was tested on a held out
constant test set after the training.

As can be seen in Figure 1 the performance curve (left-hand side) follows
the type coverage curve giving the percentage of types in thetest data already
seen in training (right-hand side) quite closely. The steepincrease of both func-
tions for 370 K tokens can be attributed to the approaching passages of training
and test part within the text corpus resulting in a larger proportion of shared
vocabulary and text style features.

It can be concluded, that for the given amount of training material our tag-
ger’s performance still depends heavily on the choice of training and test sets
and therefore does not yet show an asymptotical behaviour. This finding clearly
indicates the need for more data.

4 Efficient data acquisition

Manual POS tagging is a time consuming task, and the same holds for au-
tomatic tagging followed by manual correction. Hence an automatisation of
tagging as well as of correction would be highly desirable. Our approach to
these automatisations is described in the subsequent sections.

4 EFFICIENT DATA ACQUISITION 4

0 1 2 3 4

x 10
5

80

82

84

86

88

90

92

94

96

98

100

n(training tokens)

ac
cu

ra
cy

 in
 %

0 1 2 3 4

x 10
5

20

30

40

50

60

70

80

n(training tokens)
co

ve
ra

ge
 o

f t
yp

es
 in

 te
st

 d
at

a
in

 %

Figure 1: Left: Performance as a function of training data size.Right: Type
coverage in the test data as a function of training data size.

4.1 Basic idea

The development phase of our corpus creation model consistsof three steps:

1. An initial POS corpus is generated by applying two or more already avail-
able POS taggers on raw text data.

2. For a sample of differing tagging outputs the correct alternatives are
marked manually.

3. A classifier C is trained on this labelled sample in order topredict the
correct tagging alternative.

The manual effort required by step 2 is very low compared to manual POS
corpus generation or correction since it is restricted to differing outputs only.
Note that instances of tagger agreements are assumed to be correct. This issue
is discussed later on.

The creation of new POS data in the application phase simply consists of
the following steps:

1. Raw text is tagged by the same taggers used in the development phase.

2. For each tagging disagreement the trained classifier C chooses the correct
tag alternative (if any).

5 IDENTIFICATION OF THE CORRECT TAGGING ALTERNATIVE 5

5 Identification of the correct tagging alternative

Three supervised machine learning methods were trained on the manually
judged output differences of the taggers STT and TnT: an instance-based ap-
proach, a C4.5 decision tree and a Bayesian Classifier.

Features and targets The feature vectors of size 8 consist of the tag history
of length 2 of both taggers (4 features) as well as the observation which of the
taggers (if any) made a mistake within this history (2 features) and the current
output of the taggers (2 features).

The classification targetsc ∈ C are “STT-output is correct”, “TnT-output is
correct”, and “none of the outputs is correct”.

Instance-based learning For training an instance-based classifierIB the fea-
ture vectors were binarised. We usedk-nearest neighbour classification with k
set to 15. In application, the classification functionf̂ for feature vectorxq given
thek nearest training vectors{x1, . . . , xk} is shown in the following equation.

f̂(xq) = arg max
c∈C

k
∑

i=1

wiδ(c, f(xi)).

δ(c, f(xi)) is the Kronecker function being1 if class c equals the class
f(xi) of training vectorxi, and0 elsewise.wi weights the contribution of each
neighbourxi decreasing quadratically with respect to its distanced to xq:

wi =
1

d(xq, xi)2
.

Ford the Jaccard distance between binary vectors was chosen by measuring
the proportion of differing non-zero bits.

C4.5 decision tree In a C4.5 decision treeDT [11], each feature vector is
represented as a path from the root to the leaf connected to the vector’s class.
Each non-terminal node is associated with an attribute according to which the
set is further divided. During the recursive branching of the tree in the training
procedure the choice of the attributeA most suited to split the set of objects is
guided by a measure closely related to information gain which gives the mean
reduction of the amount of bits needed to encode the object class given that

6 RESULTS 6

the value ofA is known. The branching stops if all objects belong to the same
class or cannot be further distinguished by their features.Subsequent recursive
pruning to avoid over-adaption is guided by the comparison of the expected
error rate of a subtree and the error rate expected after its condension to a leaf.

Bayesian Classifier A Bayesian classifierBC returns the clasŝf(xq) with
the highest estimated probability given the feature vectorxq consisting of the
featuresxq1, . . . , xqn which can be reformulated by Bayes formula, omission
of the constant denominator, and the simplifying assumption of feature inde-
pendence as shown below:

f̂(xq) = arg max
c∈C

[

P (c|xq)
]

f̂(xq) = arg max
c∈C

[

P (c) ·

n
∏

i=1

P (xqi|c)
]

6 Results

In this study we have evaluated

• the capability of our models to predict the correct tag alternative, and

• the performance differences of the SVT tagger trained on thepre-tagged
and the automatically corrected data.

6.1 Correct tag prediction

The classifiers’ performances were compared by ten-fold cross-validation. A
baseline modelBL was added, which simply adopted the output of that tagger,
which performed better for the training data.

The left part of Figure 2 shows the mean performances of the classifiers
in predicting the correct tag alternative. The performances range from 49.3 %
(baseline model) to 67.3 % (C4.5 decision tree). The baseline model is sig-
nificantly outperformed by all other models (Wilcoxon test of paired samples,
p = 0.002), and the decision tree significantly outperforms all othermodels.
No significant performance difference was found for the Bayes classifier and
the K-Nearest-Neighbours classifier.

6 RESULTS 7

DT > BAY IBL > BL
0

10

20

30

40

50

60

70

80

90

100

model

m
ea

n
pe

rf
or

m
an

ce
 (

%
)

10−fold cross validation test on manually corrected reference
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

test condition

m
ea

n
pe

rf
or

m
an

ce
 (

%
)

trained on CC
trained on RC

Figure 2: Left: Mean performances of the models in identifying the correct
tagger output. DT: C4.5 decision tree, BAY: Bayes classifier, IBL: K-Nearest-
Neighbours classifier, BL: baseline classifier.>: “significantly better than”
(Wilcoxon test of paired samples,p = 0.002). Right: Tagging Performances
based on the corrected training corpus CC and on the uncorrected reference RC.

6.2 Effects of automatic corpus correction

For examination whether or not the automatic correction of the corpus increases
the performance of our SVT tagger the reference corpus (RC) was given by
the STT tagger output, and the corrected corpus (CC) by applying the C4.5
classifier on the tagging differences of STT and TnT. For “Both tags wrong”-
classifications the STT output was chosen by default.

Improvements of tagger performance. The SVT tagger was tested on ten
subsets from that part of the corpus which was manually labelled to develop
the tag-correction classifiers. SVT performed significantly better after being
trained on CC (excluding the test corpus) than after training on RC (Wilcoxon
test of paired samples, p = 0.004). The mean performances amounted 96.4%
and 96.0% respectively. These results can be found in the right part of Figure
2.

Data consistency vs. correctness.RC is less correct than CC, but at the same
time it is expected to be more consistent than CC, since it is based on a single
tagger, while CC is based on two. To test whether consistencyor correctness of
the training data leads to a better tagging performance, we carried out two ten-
fold cross validations for the SVT tagger trained and testedon CC and on RC.
It turned out, that again SVT performed slightly but nevertheless significantly
better on CC (mean: 96.5%) than on RC (mean: 96.3%; Wilcoxon test of paired

7 DISCUSSION 8

samples, p = 0.002). This result shows the slight superiority of correctness to
consistency.

7 Discussion

Simplifying assumption We have not examined yet, whether or not the sim-
plifying assumption stating that both taggers deliver the correct output when-
ever they agree, is too strong. In any case the assumption could be weakened
by using more taggers for data labelling and/or by using taggers which consid-
erably differ in their mode of operation.

Effects of automatic corpus correction The results show that although the
performances in predicting the correct tag alternative arestill quite poor (less
than 70 %), the accuracy of a tagger trained on the automatically corrected
training data increases significantly. This promising finding makes further work
on improving tag alternative prediction worthwhile.

Acquiring new POS training material As could be seen in section 3, POS
tagging requires large training corpora. Once given a corpus correction sys-
tem like the one presented in this study, POS training material simply can be
augmented by double pre-tagging additional text and identifying the correct al-
ternative. Sentences containing “Both tags wrong”-decisions could be dropped
or corrected manually.

Boosting The method described here could be transformed into a kind ofvery
simple boosting algorithm combining the two weaker classifiers STT and TnT
to form a stronger one just by replacing the classes introduced in section 5 with
the correct POS tags. Further studies are needed to test the quality of such an
approach.

Further Applications The data correction procedure proposed in this study
is principally not bound to a specific domain as POS tagging but could be used
whenever at least two labelling systems are already available and their errors
can be identified. One alternative domain would be correcting a training corpus
for grapheme-to-phoneme conversion.

REFERENCES 9

References

[1] A. Voutilainen, “A syntax-based part of speech analyser,” in Proc. of the
Seventh Conference of the European Chapter of the Association for Com-
putation al Linguistics. Dublin: Association for Computational Linguis-
tics, 1995, pp. 157–164.

[2] F. Jelinek, “Markov source modeling of text generation,” in The Impact
of Processing Techniques on Communications, ser. NATO ASI series,
J. Skwirzynski, Ed. Dordrecht: M. Nijhoff, 1985, vol. E91.

[3] A. Ratnaparkhi, “A maximum entropy model for part-of-speech tagging,”
in Proc. Conference on Empirical Methods in Natural Language Process-
ing, 1996, pp. 133–142.

[4] E. Brill, “Transformation-based error-driven learning and natural lan-
guage processing: A case study in part of speech tagging,”Computational
Linguistics, vol. 21, no. 4, pp. 543–566, 1995.

[5] H. Baayen,Word frequency distributions. Dordrecht: Kluwer, 2000.

[6] R. Sproat, Ed.,Multilingual Text-to-Speech Synthesis: The Bell Labs Ap-
proach. Dordrecht: Kluwer, 1998.

[7] T. Brants, “Tnt – a statistical part-of-speech tagger,”in Proc. ANLP-2000,
Seattle, WA, 2000.

[8] H. Schmid, “Improvements in Part-of-Speech Tagging with an Applica-
tion to German,” inEACL, SIGDAT, Dublin, 1995.

[9] U. Reichel, “Improving data driven part-of-speech tagging by morpho-
logic knowledge induction,” inProc. Advances in Speech Technology AST,
Maribor, 2005.

[10] M. Nascimento and A. da Cunha, “An experiment stemming non-
traditional text,” inSPIRE’98 Proceedings, Santa Cruz de La Sierra, Bo-
livia, 1998.

[11] J. R. Quinlan,C4.5: Programs for Machine Learning. San Mateo: Mor-
gan Kaufmann, 1993.

