
Automated Morphological Segmentation and Evaluation

Uwe D. Reichel, Karl Weilhammer

Department of Phonetics and Speech Communication
University of Munich, Schellingstr.3 , 80799 Munich, Germany

{reichelu, weilkar}@phonetik.uni-muenchen.de

Abstract
In this paper we introduce (i) a new method for morphological segmentation of part of speech labelled German words and (ii) some
measures related to the MDL principle for evaluation of morphological segmentations. The segmentation algorithm is capable to discover
hierarchical structure and to retrieve new morphemes. It achieved 75 % recall and 99 % precision. Regarding MDL based evaluation, a
linear combination of vocabulary size and size of reduced deterministic finite state automata matching exactly the segmentation output
turned out to be an appropriate measure to rank segmentation models according to their quality.

1. Introduction

Morphological segmentation systems can roughly be di-
vided in three major classes: (i) handmade systems, (ii)
models that have been learned under supervision, and (iii)
models induced without supervision.

Hand-crafted systems work on the basis of linguistic
knowledge provided by an expert. A possible implemen-
tation of such systems is given by finite-state transducers
in the framework of two-level morphology (Koskenniemi,
1983) which relates letter sequences on the surface level to
more abstract morpheme sequences on the lexical level.

Supervised learning methods are trained on already seg-
mented words. An example would be the connectionist ap-
proach of Rumelhart et al. (1986).

Finally, unsupervised induction is provided by raw data
to be structured by certain principles depending on the re-
spective approach, that might for example be based on min-
imum description length (Goldsmith, 2001).

For German there exists already a variety of morphol-
ogy systems. An overview over some of these systems that
participated at the first Morpholympics, can be found in
Hausser (1996).

2. Goal of the paper

In the following we will present a method for morpho-
logical segmentation for German. It is based on knowledge
about inflection, derivation, and morphotactics, and part of
speech (POS) information. Apart from POS the knowledge
is prepared manually, but opposed to fully hand-crafted sys-
tems, this preparation is much less time consuming and can
easily be carried out by consulting some standard grammar.
In contrast to most of the supervised and unsupervised ap-
proaches, that can just cope with certain aspects of mor-
phology, it provides full morphologic segmentation. It in-
cludes the capabilities to generate allomorphs, to deal with
hierarchical structure, and to retrieve new morphemes.

Further, measures were adopted from unsupervised
morphology induction within the MDL framework in order
to evaluate several segmentations of different qualities.

3. Data
The input of our segmentation method consists of auto-

matically POS labelled1 text material. We used the SI1000P
corpus, which is part of the Bavarian Archive for Speech
Signals2 and contains 1000 German broadcast sentences
(5738 types3 ).

4. A method for automatic morphological
segmentation

German as a highly inflectional language uses both
bound morphemes and stem modifications for inflection
and derivation. In addition it is very productive in combin-
ing words to compounds that can have a (theoretically infi-
nite) degree of complexity. Our algorithm that is described
below tries to cope with these difficulties. It consists of two
main steps: lexicon construction and segmentation.

4.1. Lexicon construction

The lexicon initially comprises bound morphemes such
as inflectional and derivational suffixes, prefixes and link-
ing morphemes as being given by a standard grammar
(Klosa et al., 1998). It is then augmented by the input
data, applying stemming and allomorph generation when-
ever possible. All types as well as the retrieved stems and
allomorphs are stored in the lexicon together with their cor-
responding POS and morpheme class respectively. The
storage of allomorphs in the lexicon simplifies segmenta-
tion later on, because it can be achieved within the lim-
its of simple concatenative morphology (i.e. connecting
morphemes without taking care of the context sensitivity of
their realization, as it would be the case in two-level mor-
phology).4

Stemming In order to reduce the amount of errors result-
ing from our partly string based stemming operations (some
of them are described here), a potential stem must contain
at least three letters including at least one vowel in all cases.

1http://www.ims.uni-stuttgart.de/projekte/corplex
2http://www.phonetik.uni-muenchen.de
3Types with different POS are distinguished.
4The disadvantage of such a simplification is of course the

system’s incapability for morpheme sequence generation due to
overgeneralization.



Verbs Inflectional suffixes for verbs are separated by
simple greedy pattern matching. The longest suffix stored
in the lexicon is tested first, if it is a final substring of the
verb. If a matching potential suffix starts with a ‘t’, it is only
accepted if no infinite form in the corpus indicates, that this
letter is part of the stem (e.g. in betet (prays) the first ‘t’
remains part of the stem, if beten (to pray) is found in the
data, that is clearly divided into bet+en).

Adjectives Apart from inflectional suffixes for adjec-
tives, comparative morphemes are also separated.

Nouns Concerning nouns, stemming is more compli-
cated (e.g. en in Bahnen (tracks) indicates plural, whereas
in Rasen (lawn) it is part of the stem). Therefore we only
define an initial substring as a stem, if it cooccurs with
at least two different inflectional morphemes (not starting
with the same letter) of the same declination class (e.g.
Bilds, Bilder). For some declination classes also umlaut
allomorphs are considered.

Derivational variants Initial substrings coocurring
with at least two different derivational suffixes were also
included in the lexicon and classified as verb stems.

Allomorph generation For comparative adjectives con-
taining an umlaut, allomorphs with the corresponding vow-
els are added to the lexicon. Furthermore some of the ablaut
paradigms for strong verbs (that can be identified by their
endings in perfect participle and some past forms) allow
secure allomorph generation by vowel replacement (e.g.
ge+lauf+en −→ lief )

4.2. Segmentation

Basic algorithm (cf. Figure 1) Each type w of the input
text is recursively divided into string prefixes and suffixes
from left to right until a permitted segmentation is achieved
or until the end of w is reached.

In the course of the recursion a boundary dividing the
current string in prefix and suffix is accepted if (i) the pre-
fix is found in the lexicon, (ii) there exists a permitted seg-
mentation for the suffix or (if not) the suffix is found in the
lexicon, (iii) the sequence ‘prefix class + class of first suffix
segment’ is not in conflict with German morphotactics (cf.
Table 1) and (iv) the class of the last suffix is in correspon-
dence with w’s POS (cf. Table 1).

noun suffix linking morpheme, noun suffix, noun inflection

finite verb verb inflection, verb stem

Table 1: Sample entries for morphotactics (top: right hand
morpheme classes can follow left hand ones) and POS–
class(last suffix) compatibility (bottom: types with left
hand POS must end with a morpheme of right hand class)

Hierarchical structure If a segmentation was success-
ful, it is recursively reapplied for each found segment. This
second, finer grained segmentation can be used to reveal
hierarchical structure. For example applying the function
‘segmentation’ (cf. Figure 1) to the word Samstagnach-
mittag (Saturday afternoon) leads to the segments Sam-
stag+nachmittag, leaving nachmittag undivided because

global list morphs := [ ]
function segmentation(str) ≡

for i:=2 to length(str)-1

[ prfx, sfx ] := split(str) at position i
if (prfx ∈ lexicon)

if (segmentation(sfx) and

morphotactics ok(class(prfx), class(first sfx)))

morphs := [prfx, morphs]
return 1

elseif (sfx ∈ lexicon and

morphotactics ok(class(prfx), class(sfx)) and
compatible(class(sfx), pos(word)))

morphs := [prfx, sfx]
return 1

endif

endif

endfor
return 0

Figure 1: Algorithm for morphological segmentation (mor-
photactics ok is applied for all combinations of possible
classes of prfx and sfx)

according to morphotactics the preposition nach cannot
follow the noun Samstag. Reapplying ‘segmentation’ to
the segments in isolation leads to the desired splitting in
[Samstag]+[nach+mit+tag] and reflects the different con-
nection strengths between the parts of the compound.

Discovery of new morphemes If a complete segmen-
tation of type w fails, it is tested whether w is partially
segmentable, that is if the function ‘segmentation’ can be
applied successfully to substrings of w. If just one sub-
string s of w remains unsegmentable and if s is found in
several different segmentable (or lexical) environments it
is treated as a (not classified) morpheme, and affected to-
kens are segmented accordingly. This method has turned
out to be a good way to get along with data sparseness. In
our data for example Chef (boss), did not occur as a sim-
plex, but has been found in five different segmentable (or
lexical) contexts, among them Chefpilot (chief pilot) and
Regierungschef (head of government) and could therefore
be considered as a morpheme.

4.3. Evaluation by hand

The model’s performance was manually evaluated for
1500 types. The types were chosen randomly from those,
that are potentially segmentable due to their POS. Omis-
sions and false insertions of segment boundaries were
counted, a boundary displacement was punished by adding
one omission and one insertion. The model yields 75 % re-
call and 99 % precision, indicating a rather restrained place-
ment of boundaries. For 70 % of the types the analysis was
completely correct. As the corpus used here is rather small
recall should be improved by adding more input data con-
taining more simplex forms. For example, Flugzeug (aero
plane) could not be segmented, because Zeug was not part
of the corpus.



5. Measures for automated evaluation
Several algorithms for unsupervised morphological seg-

mentation are based on the MDL principle (Rissanen,
1989). According to this principle initially used in cod-
ing theory, the quality of an explanatory model for a data
set depends (i) on the degree of data compression, that can
be interpreted as vocabulary size reduction, and (ii) on the
model’s compactness. We adopted this framework in order
to evaluate morphological segmentations.

In order to model the data size aspect of the MDL prin-
ciple we tested vocabulary size and entropy measures for
the evaluation of segmentations of different quality. The
model size aspect is considered here by comparing the size
of reduced deterministic finite state automata resulting from
the respective segmentations. Both aspects are finally inte-
grated by linear combination.

Evaluated models The following segmentations have
been compared by the measures described above: (i) the
complete segmentation found by our algorithm as described
in section 4., (ii) partial outputs of this segmentation, (iii)
segmentation by chance into the mean number of morphs
per type (as found in (i)), and (iv) letter by letter segmenta-
tion. Partial segmentations were obtained by permitting at
most n morphs per type merging the surplus rear morphs.
n ranged from 1 to 9, which was the highest number of
morphs per type found in the results of the complete seg-
mentation.5

5.1. Data size

Morphological segmentation reduces vocabulary size.
This fact is also reflected in the entropy measure, which
is defined for the data set X as follows:

H(X) = −
∑

x∈X

P (x) log
2
P (x)[bit] (1)

It gives the amount of bits needed to encode the data. P (x)
is the probability of the item x ∈ X , where X was the set
of unigrams and the set of bigrams. Entropy gets low if
the probabilities assigned to the x’s get high, which can be
achieved by the reduction of vocabulary size due to mor-
phological segmentation. In general it can be stated: the
better the segmentation, the higher the reduction, the lower
the entropy.

Results Figures 2 and 3 show the relation between model
quality and data size represented as vocabulary size and n-
gram entropies. The 11 models are lined up on the x-axis
from left to right as follows: letter by letter segmentation,
segmentation by chance, no segmentation, and segmenta-
tions with an increasing number of segments allowed for
each type. It can be seen that vocabulary size and unigram
entropy correspond better to the model quality than bigram
entropy, for which the small amount of data might be re-
sponsible.

Including weights To cope with the fact that, due to its
small vocabulary size, letter by letter segmentations lead
to the best entropy values, we tested the incorporation of

59 morphs have been found in Un+ab+häng+ig+keit+s+
er+klär+ung (declaration of independence).
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Figure 2: Entropies (normalized to mean=0 and standard
deviation=1) for segmentation models increasing in quality
from left to right; + unigram, / bigram, ∗ vocabulary size

weights in the evaluation measure in order to penalize mul-
tiple occurrences of a morpheme within the same word.
The contribution of each morpheme m is weighted by c

n

o ,
where n is the number of types that m is part of, o is the
number of types in which m occurs just once, and c is a lan-
guage dependent constant (16, chosen heuristically). This
penalty reflects the assumption that in languages like Ger-
man (but not universally of course) morpheme repetitions
are uncommon. This is also reflected in our data, where just
0.8% of the types showed such a repetition. As can be seen
in Figure 3, this weighting has no influence on the ranking
of segmentations of different quality except for the letter
by letter case, which is degraded, showing a high amount
of repetitions within one type.
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Figure 3: Unigram Entropy (normalized to mean=0 and
standard deviation=1) – with (∗) and without (+) weights
– for segmentation models increasing in quality from left to
right



5.2. Model size

Reduced deterministic finite state automata (DFSA) de-
rived directly from the segmented data can be considered
as abstract representations of the segmentation model, be-
cause regarding their output they are equivalent. Model
comparison is facilitated by transforming beforehand each
model in such a DFSA in order to get an uniform represen-
tation. Model size as being a quality feature of the MDL
principle can be compared this way by just counting the
automata’s states.

From the segmented data we constructed reduced DF-
SAs accepting exactly the given segmentations. The con-
struction was accomplished the way tries are constructed
(cf. Figure 4). A trie is a tree storing strings in which there
is one node for every common prefix. The trie’s root was
appointed as the automaton’s initial state, the leaves as the
final states. The automaton was then minimized by a com-
mon method of iteratively grouping indistinguishable states
in finer grained partitions.

highest state := 0
s := 0 %initial state
Q := [s] %set of states
F := [ ] %set of final states
foreach word of wordlist

state := s
foreach morph of word

if not defined δ(state,morph) %transition

highest state := highest state+1
δ(state,morph) := highest state
Q := [Q, highest state]

state := δ(state,morph)

end
F := [F, state]

end

Figure 4: Algorithm for DFSA construction (as a trie)

Results As expected, Figure 5 shows that model size gets
large for letter by letter segmentation (model 1), and after
a minimum at the no-segmentation model (model 3), it in-
creases again. The first observation is simply explained by
the fact that letters can be combined much more freely than
morphemes resulting in much larger models. Secondly, a
DFSA only distinguishing between types just needs two
states, and finally, with increasing segmentation capability
the number of needed states also increases.

5.3. Linear Combination

We tried to integrate data and model size aspects to a
single quality measure by linear combination. The weights
were estimated by least square fit for a decreasing linear
function of slope -1. It turned out that – decreasing mono-
tonically – the combination of DFSA size with vocabulary
size reflects segmentation quality more appropriately than
the combination of DFSA size with entropy. The resulting
measure is thus:

1.55 · vocabulary size + 1.26 · DFSA size (2)

As can be seen in Figure 5 the models are ranked ac-
cording to their quality. With increasing quality the curve

gets flatter due to the decreasing amount of improvement
(much less improvement is achieved for example, if the
number of allowed morphemes per type is incremented
from 7 to 8 than from 2 to 3, because much less types are
concerned).
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Figure 5: vocabulary (+) and model size (/) and their lin-
ear combination (∗) for segmentation models increasing in
quality from left to right

6. Conclusion
In this paper we have introduced a new segmentation

method that needs just very little manually prepared lin-
guistic knowledge. It has to be tested if its performance
increases when being confronted with a larger corpus. On
one hand it has access to more simplex forms, what should
increase recall of segment boundaries. On the other hand
it is like all rule based systems quite vulnerable to noise,
that arises for example from POS tagging errors. Heuristics
would have to be added to cope with this problem.

The linear combination of model size, represented as
the number of states of an equivalent reduced DFSA, and
vocabulary size given after the application of this model
has proved to be an adequate measure to evaluate the seg-
mentation models used in this study, and a more general
usability should be tested in future surveys.
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