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Abstract: This paper deals with new methods for phoneme-to-phoneme (P2P)
alignment and conversion. Alignment is carried out by dynamic programming for
Levenshtein distance calculation. Cost functions based on phoneme co-occurrence
statistics and on distinctive feature vector distances accounting for connected speech
processes are comparatively evaluated. Given the aligned data, decision trees for
P2P conversion across word boundaries are trained and evaluated. Amongst oth-
ers it turned out, that while accounting for assimilation processes improved align-
ment quality, these quality differences showed no impact on P2P conversion per-
formance.

1 Introduction

P2P alignment serves to relate corresponding parts of parallel transcriptions. In fundamental
linguistic research it can be used to infer phonological rules transforming canonic to sponta-
neous speech. In text-to-speech synthesis it serves in combination with P2P conversion to map
the canonical transcription derived from text preprocessing onto a more natural transcription
accounting for connected speech processes. Some approaches for proper name pronunciations
[10] employ a cascade of grapheme-to-phoneme and subsequent correcting P2P conversion.

Alignment Alignment of two sequences a and b is generally treated as a task to transform a
to b by a minimum amount of edit costs. This minimisation task can be solved algorithmically
e.g. by a method proposed by [11]. In the simplest case the minimum edit cost corresponds to
the minimum number of needed edit operations, the Levenshtein distance. In our study some
cost functions related to typical edit operations and the affected symbols are introduced.

Conversion While alignment is generally learned in an unsupervised fashion, for P2P con-
version supervised machine learning methods can be trained on the aligned data. Basically,
the same methods can be used as for grapheme-to-phoneme conversion, as are for example
probabilistic approaches like joint-sequence models [1] or classifiers like neural networks and
decision trees [7]. While probabilistic converters attempt to find global solutions by maximising
the overall conversion probability, the other mentioned models operate locally by converting a
grapheme or phoneme with respect to its surrounding context to a target phoneme.

2 Alignment

2.1 General architecture

The models developped here have in common that they consider alignment as a dynamic pro-
gramming problem as described in section 1. For all models the standard basic edit operations



substitution, insertion, and deletion are used. The models differ with respect to the costs as-
signed to the edit operations. While model CoocA employs a cost function based on phoneme
co-occurrence probabilities, model FeatA assigns edit costs as suggested by phonological prin-
ciples concerning phoneme representations, their functional loads, as well as connected speech
processes.

Notation: In the subsequent sections the phoneme sequences v and w stand for the the canonic
and the spontaneous speech transcriptions, respectively, |v| for the length of v. c is a cost
function, c(vi,w j) denotes the cost to substitute the i-th symbol of the canonic transcription by
the j-th symbol of the spontaneous speech transcription, c(vi, ) is the cost to delete vi, and
c( ,w j) is the cost to insert w j.

2.2 CoocA: Statistic co-occurrence-based cost function

2.2.1 Substitutions

Substitution costs are defined as follows:

c(vi,w j) =
{

0 : vi == w j
1−P(w j|vi) : else. (1)

Zero substitutions are given a cost of zero, and substitution costs for unequal < vi,w j >-pairs
are defined in terms of conditional probabilities, which are calculated by maximum likelihood
estimation: P(w j|vi) = #(vi,w j)

#(vi)
. For the < vi,w j > co-occurrence statistics counts are incre-

mented by centering a triangular window of length 7 and area 1 on vi. This window allows a
weighted distribution of < vi,wk > count increments for k = j− 3 . . . j + 3. This procedure is
very similar to the Pfitzinger aligner approach described in [6].

2.2.2 Deletions

The deletion cost of a phoneme vi is defined as follows:

c(vi, ) = 1−P(vi
∣∣|v|> |w|). (2)

To derive the underlying < vi, > frequencies, transcription pairs containing a v which is
longer than w trigger a uniform distribution of the total count increment |v|− |w| over all vi in
v.

2.2.3 Insertions

The insertion cost of a phoneme w j is defined as:

c( ,w j) = 1−P(w j
∣∣|v|< |w|). (3)

As for the deletion costs, transcription pairs containing a v shorter than w, the count increment
|w|− |v| is distributed uniformly over all w j in w.



2.3 FeatA: Similarity-based cost function

In the FeatA model costs are defined with respect to phonologic distances between phonemes
which are expressed as Hamming distances between their distinctive feature vectors. Four vari-
ants of this model are introduced:

• FeatA: including feature weighting and assimilation

• FeatA-a: without assimilation

• FeatA-aw: without assimilation and feature weighting

• FeatA-w: without feature weighting

2.3.1 Distinctive Features and their weights

Vowels are described by the distinctive features tongue height, tongue position, and lip round-
ing, consonants by mode, place, and voicing. For /@/ the feature values are not specified which
serves to faciliate vowel reduction and /@/-deletion (see below).
In FeatA and FeatA-a features are weighted by their functional load FL. In general, the FL of

an opposition between two linguistic entities a and b (e.g. phonemes) is traditionally related to
the number of contrasts this opposition is responsible for in a language L. The basic information
theoretic definition adopted here was first introduced in [2]:

FL(a,b) =
H(L)−H(La=b)

H(L)
. (4)

H(L) is the entropy of a language L. La=b denotes a language lacking an opposition of a and b.
FL(a,b) thus stands for the relative amount of information loss resulting from such a merging.
In this study, we adopt this notion to quantify the importance of the distinctive features used

for phoneme description. The functional load of a feature x is defined accordingly as:

FL(x) =
H(L)−H(L−x)

H(L)
, (5)

L−x assigning a language where the feature x is not used to distinguish between phonemes.
Since our entropy calculation is based on word-level unigram probabilities, functional load is
roughly related to the relative increase of the amount of canonic homophones in our training
data resulting from the ’−x’-induced phoneme merging.
FL is used to weight the contribution of each feature in distance calculation.

2.3.2 Substitutions

Substitution costs between phonemes vi and w j basically are defined as the Hamming distance
d between their feature vectors f :

c(vi,w j) = d( f (vi), f (w j)) =


∑n: fn(vi)6= fn(w j)

1

| f (vi)| : FeatA-aw, FeatA-w
∑n: fn(vi)6= fn(w j)

f ln
| f (vi)| : FeatA, FeatA-a,

(6)

where n represents the positions at which f (vi) and f (w j) differ. Since vowel-consonant vector
pairs contain incompatible features, they are assigned the substitution cost 1.
d is not entirely symmetric, since only unspecified values in f (vi) and not in f (w j) are taken

into account for distance calculation. This asymmetry serves to capture vowel reductions.



Assimilation For models FeatA and FeatA-w equation 6 is expanded by following assign-
ment:

d( f (vi), f (w j)) = d(fa(vi−1,vi,w j), f (w j)), (7)

where fa is the vector most similar to f (w j) resulting from merging f (vi−1) and f (vi). This
procedure allows for modelling progressive assimilation of features of the preceeding segment.
In case of vi−1 = w j, assimilation is suppressed in order to model the articulatory constraint not
to produce the same phoneme consecutively. It is not possible to model regressive assimilation
of subsequent phoneme features since the dynamic programming algorithm used here lacks a
look ahead mechanism.

2.3.3 Deletions

The deletion cost of vi reflects the loss of syntagmatic contrast that would have been given in
presence of vi. In the models not accounting for assimilation (FeatA-a, FeatA-aw) this notion
is defined by the FL-sum of all features of vi normalised by the length of the feature vector.
Combined with assimilation (FeatA, FeatA-w) the additional contrast is retrieved by summing
the FLs of all features with values different from those of the preceeding phoneme vi−1.

c(vi, ) =



∑n f ln
|vi| : FeatA-a
∑n 1
|vi| : FeatA-aw

∑n: fn(vi)6= fn(vi−1) f ln
|vi| : FeatA

∑n: fn(vi)6= fn(vi−1) 1
|vi| : FeatA-w

(8)

2.3.4 Insertions

In analogy to deletion, the cost of inserting w j after vi reflects the notion of newly introduced
syntagmatic contrast, expressed again in model-dependent ways:

c( ,w j) =



∑n f ln
|w j| : FeatA-a
∑n 1
|w j| : FeatA-aw

∑n: fn(w j)6= fn(vi)
f ln

|w j| : FeatA
∑n: fn(w j)6= fn(vi)

1

|w j| : FeatA-w

(9)

Note that in FeatA-aw insertion and deletion costs are simply 1.

3 P2P conversion

For P2P conversion C4.5 decision trees [5] are utilised. The mapping of the canonic phoneme
vi onto the connected-speech phone wi depends on the following features:

• phoneme window vi−2 . . .vi+2

• word class: function or content word



• previous target phoneme wi−1 (which in testing and application is the preceeding tree
output)

The word class feature is expected to account for the fact that more reductions take place in
function words compared to content words. The recurrent architecture of the tree taking its
previous output as an input feature is motivated by the need for phonotactic smoothness [8].
Since connected speech is to be captured, the phoneme window, as well as the previous target
are not limited by word boundaries (except for those at turn boundaries).

4 Evaluation

4.1 Data and Method

For training and testing our aligners and converters we used the Kiel Corpus of Spontaneous
speech [3], which provides manually aligned canonic and phonetic transcriptions of approxi-
mately 48000 word tokens.
To comparatively evaluate the aligners, for each alignment method a tenfold cross-validation

was carried out. The training data served to estimate the probabilistic cost function for CoocA
and the FL weights for FeatA and FeatA-a. In the test partititons only differing canonic and
phonetic transcriptions were considered.
Subsequently, in order to examin the impact of alignment quality on P2P conversion, the tree

classifier was trained and tested by tenfold cross-validation on five variants of the data produced
by the five aligners.
For both alignment and P2P conversion word error rates (WER) and Mean normalised Lev-

enshtein distance (MNLD) were measured. The MNLD is defined as in [8] as the average
Levenshtein distance between model outputs and respective reference sequences normalised by
the length of the reference. Costs for zero-substitutions were set to 0, all other editing costs to
1.

4.2 Alignment

Functional loads As can be seen in figure 1 the functional loads of the distinctive features
differ significantly (Friedman test, χ2

5 = 49.09, p < 0.001). The consonant-related features
mode mod and place of articulation pla carry a significantly higher load than the other features,
which can be further divided into the vowel-related feature tongue height hgt and the signifi-
cantly lower remaining features tongue position pos, lip rounding rnd and voicing voi (Dunnett
post-hoc test, α = 0.05).

Performance The left half of Figure 2 shows the word error rates of the compared alignment
models on the training and the test data respectively after 10-fold cross validation.
Significant performance differences can be reported for the held-out test data (Friedman test,
χ2

4 = 37.84, p < 0.001) showing that the phoneme similarity-based models accounting for as-
similation, namely FeatA and FeatA-w, yield significantly better alignments than the others
(Dunnett post-hoc test, α = 0.05). Next to assimilation the weighting of the distinctive features
leads to a slight but not significant further performance improvement.
A similar pattern arises when looking at mean normalised Levenshtein distances (see table 1),

although a smaller number of significant differences can be found here.
No significant performance difference with respect to training against test data was observed for

any of the alignment models, neither for WER nor for MNLD (Mann-Whitney tests, p > 0.38,
mostly > 0.7).



Figure 1 - Functional loads related to the utlised distinctive features after ten-fold cross validation.
Vowels: hgt: tongue height, pos: tongue position, rnd: lip rounding, Consonants: mod: modus, pla:
place of articulation, voi: voicing.

Table 1 - Mean normalised Levenshtein distances between aligner outputs and reference alignments and
between P2P converter outputs and reference transcriptions depending on the aligner.

Model CoocA FeatA FeatA-a FeatA-aw FeatA-w
MNLD Alignment 0.0335 0.0204 0.0236 0.0222 0.0222

P2P 0.1030 0.1028 0.1034 0.1037 0.1049

4.3 Conversion

The right half of Figure 2 shows the word error rates of P2P conversion depending on the
preceeding data alignment. No significant performance differences were found (Kruskal-Wallis
test, χ2

4 = 3.58, p = 0.47). The same holds for the mean normalised Levenshtein distances
shown in table 1.

5 Discussion

5.1 Alignment

Generalisation capability Since none of the alignment models performed significantly worse
on the held-out data compared to the training data, it can be concluded that the methods intro-
duced here are robust enough to cope with unseen data.
Due to its purely co-occurrence based cost-function CoocA does not explicitely utilise phono-

logical knowledge and therefore can be applied also in other domains than P2P. The more
phonologically motivated FeatA and its variants make usage of phonologic principles related
to functional loads, feature vector distances, and assimilation processes of phonemes. Never-
theless, parts of the phonologic knowledge are not hard-coded but induced from the training
data. A potential strength of the phonologic approaches may lie in comparably modest require-
ments concerning the amount of training data.



Figure 2 - Left: Alignment word error rates for all alignment models. Right: P2P conversion word
error rates depending on the data alignment. Alignment models: CoocA: Co-occurrence-based, FeatA:
Phoneme similarity-based including assimilation and feature weighting, FeatA-a: without assimilation,
FeatA-aw: without assimilation and feature weighting, FeatA-w: without feature weighting.

Impact of phonologic knowledge Incorporating assimilation turned out to be valuable for
P2P alignment resulting in significantly higher performances compared to all other models.
Functional load in contrast turned out to be of minor importance, since its integration led only

to small and not significant improvements. This observation is in line with studies in other
domains as sound change [9] reporting only little influence of FL. Perhaps a modified definition
of this concept, e.g. by taking lexical context into account, could make the FL measure more
valuable for these purposes.

Heuristics While for CoocA as well as for FeatA substitution costs are well motivated, inser-
tion and deletion (indel) costs are assigned in a rather heuristic fashion. This shortcoming may
weaken the general adequacy of the used metrics. While for example several heuristic methods
are reviewed in [4], no more fundamental approaches to determine indel costs are known to
the authors. Given this state of the art, at least alternative heuristics should be comparatively
evaluated in future studies.

5.2 Phoneme-to-phoneme conversion

Alignment quality did not show any impact on P2P conversion accuracy, since significant align-
ment performance differences did not result in different P2P qualities. This finding suggests,
that all employed alignment methods are equally adequate in providing P2P training data de-
spite their quality differences.
In general P2P conversion yields rather modest performance rates which partly can be put into

perspective by looking at following factors: First, as opposed to grapheme-phoneme conversion
resulting in generally singular canonic transcriptions, P2P conversion has to face a much higher
amount of target phoneme variability, which can be attributed to inter-speaker differences as
well as intra-speaker variations triggered by higher linguistic factors like phonetic reduction
processes in conveying given or unimportant as opposed to new or important information. These
factors are not accounted for by the pool of low-level features used in this study.
Second, since the listener accepts (and also expects) pronunciation variability, the WER mea-

sure is certainly too crude to appropriately capture the P2P quality.



To cope with inter-speaker variability, P2P conversion could be restricted to model just a sin-
gle speaker. Parts of the intra-speaker variability can be accounted for by providing the con-
verter with higher linguistic semantics and discourse level features. Further, to consider also the
variability accepted by the listener, next to the crude mathematical evaluation also perception
experiments yielding comprehensibility and naturalness judgments are needed.
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