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Abstract: Our approach for unsupervised extraction of prosodic structure in spon-
taneous speech consists of the four steps: chunking into interpausal units, syllable
nucleus extraction, prosodic boundary detection, and pitch accent detection. The
extraction is based on acoustic features derived from FO parameterization, and on
energy and segment duration features. Phrase boundaries and accents are detected
by means of nearest centroid classifiers which are bootstrapped from the data.

1 Introduction

Manual prosodic annotation of prosodic boundaries and pitch accents is a time consuming task.
It requires inter- and intra-labeler consistency checks [1, 2], and since it is often embedded in
a particular theoretic framework it often cannot straight-forwardly be adopted to new language
data. Thus an automatization of the annotation process is highly desirable. So far most stud-
ies addressed the prediction of prosodic structure from linguistic and/or acoustic features by
supervised learning, e.g. [3, 4, 5, 6, 7]. Considerably speeding up the annotation process, the
bottleneck of these approaches is still their need for manually annotated training data, which is
often not available especially for under-studied languages.

So far much less studies focused on the unsupervised extraction of prosodic structure. To
our knowledge, at the current state the best results were obtained by [8] who applied a contin-
uous wavelet transform to a composite signal combining FO, energy, and word duration. Pitch
accents are identified by a high amount of co-occurring maxima of wavelets on different scales,
and analogously phrase boundaries by co-occurring minima. [9] propose an iterative approach:
after an initial clustering based on acoustic features, conditional probability distributions over
linguistic features are derived from reliable items close to their respective centroid. The prob-
abilities are then used to classify items with less acoustic evidence to belong to one of the
prosodic classes. [10] propose an iterative parallel training and application of weak classifiers
on acoustic and linguistic features, that starts with a small amount of manual seed annotations
and iteratively automatically annotates the rest of the data.

The current study aims to contribute to this line of research by an approach that relies on
acoustic features only and does not require manually annotated seed exemplars but initializes
clustering in a purely data-driven bootstrap approach. It is applied to spontaneous speech in-
stead of read news speech used in the unsupervised extraction studies mentioned above.

2 Data

2.1 Corpus

The underlying data consists of the prosodically annotated German parts of the Verbmobil I
corpus [11] of spontaneous dialog speech, that is available in the BAS repository [12]. The
used part comprises 180 turns (22 minutes, 10 speakers). The annotation relevant for this study
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contains an automatic signal-text alignment on the phoneme and word level by MAuS [13]
(tier MAU) and a manual prosodic annotation (tier PRB). From the compound prosodic labels
the prosodic event strength encodings were translated into 2 classes each for boundaries and
accents: presence (class 1) vs. absence (class 0) of a prosodic event. For prosodic bound-
ary detection each word boundary was marked accordingly, mapping no label and B2 (minor
boundary) cases to class 0, and B3 and B9 (major, irregular boundary) cases to class 1. For ac-
cent detection no label corresponds to class 0, and NA, PA, EK (weak, strong, emphatic accent)
were assigned to class 1.

2.2 FO0 and energy extraction

FO was extracted by autocorrelation (PRAAT 5.3.16 [14], sample rate 100 Hz). Voiceless utter-
ance parts and FO outliers were bridged by linear interpolation. The contour was then smoothed
by Savitzky-Golay filtering [15] using third order polynomials in 5 sample windows and trans-
formed to semitones relative to a base value. This base value was set to the FO median below
the Sth percentile of an utterance and serves to normalize FO with respect to its overall level.

Energy in terms of root mean squared deviation was calculated with the same sample rate
as FO in Hamming windows of 50 ms length.

3 Tasks and general procedure

The tasks of this study are: chunking of the utterances into interpausal units, syllable nucleus
assignment, prosodic phrase boundary detection, and pitch accent detection.

2-class (presence or absence) phrase boundary decisions are made on the word level for
each word boundary, and 2-class accent decisions on the syllable level for each syllable nucleus.
Since each step operates partially on the output of the previous steps, the tasks are carried out
sequentially.

In an initial exploratory phase a third of the data (60 turns; in the following referred to
as tuning data) was used to successively tune some of the syllabification, phrasing, and accent
localization parameters in a brute-force way testing several parameter values. This exploratory
phase was needed to gain first experience how to initialize the components.

4 Chunking and syllable nucleus extraction

4.1 Chunking

In the current approach the chunking of a speech signal into interpausal units is derived simply
from inverting the output of a pause detector described in more detail in [16].

Pauses were detected by energy (RMS) comparison of the low-pass filtered signal between
an analysis window w, and a longer reference window w, with the same time midpoint that are
moved along the signal in 50ms steps. Low-pass filtering was carried out by a Butterworth filter
of order 5. For pause assignment the energy in w, has to be lower than in w, by a factor v, i.e.
RMS(w,) < RMS(w;) - v. The model parameters are: the upper cutoff frequency f, the window
lengths w,, w,, the threshold factor v, and the minimum required pause length [/ in order not
to erroneously consider the occlusion phase of plosives as pauses and to extract pauses long
enough to justify separating the signal into different chunks. The parameters were estimated in
a previous study [16] by the non-linear Nelder-Mead Simplex optimization [17] that yielded the
following values: f = 8000Hz, w, = 0.15s, w, =55, v=0.08, [ =0.5.



4.2 Syllable nucleus extraction

Syllable nucleus assignment follows to a large extent the procedure introduced in [18]. Again
an analysis window w, and a reference window w, with the same time midpoint were moved
along the this time band-pass filtered signal in 50ms steps. Filtering again was carried out by a
5th order Butterworth filter with the cutoff frequencies 200 and 4000Hz. For a syllable nucleus
assignment the energy in the relevant frequency range r is required to be higher in w, than in
w, by a factor v, and additionally had to surpass a threshold x relative to the maximum energy
RMS,,,4x of the utterance, i.e. RMS(w,) > RMS(w,) - v ARMS(w,) > RMS,,,,, - x. Exploratory
tuning yielded the following values: w, = 0.05s, w, =0.11s,v= 1.1, x =0.1.

5 Prosodic structure assignment

After chunking and syllable nucleus assignment prosodic structure was induced in terms of
bootstrapped nearest centroid classification. The feature sets, feature weighting, and the chunk-
ing procedure are described in the following.

5.1 Phrase boundary features

The feature set for phrase boundaries was derived from a parameterization of pitch register
discontinuity at each word boundary as illustrated in Figure 1. Within a stylization window
of maximally 4 seconds centered on a word boundary and limited by the chunk boundaries
three regression lines, a base- a mid- and a topline were fitted to three FO contour segments: to
the segments left- and right adjacent to the boundary, seg; and seg, and to their concatenation
seg2. The midline represents the FO register level, and a linear regression through the pointwise
distances between base and topline represents the register range. Discontinuity is then defined
in terms of the deviation of the level and the range regression lines between seg, and seg; and
segy, respectively. This approach is described in more detail in [19]. From this parameterization
the following discontinuity features were extracted:

e the pairwise absolute slope differences of the level and range regression lines between the
3 segments: S1_12, $2_12, S1_2,

e the RMS between these lines,
e the absolute pitch resets d_12, da_12, d1 2.

In [19] these features had turned out to be positively correlated with perceived prosodic
boundary strength.

Next to these register discontinuity features final lengthening was captured by the normal-
ized duration of the last vowel in the MAU tier preceding the word boundary. Normalization
consisted in dividing the length of this vowel by the mean length of all vowel segments with the
same label in the entire data.

5.2 Accent features

Accent features were extracted for each detected syllable nucleus. Within an analysis window
of 0.2s length centered on the nucleus the FO maximum, median, inter quartile range, and RMS
were calculated. Analogously, for the energy contour within this window we calculated the
maximum, median, and the RMS. All values were normalized within a longer normalization
window of maximum length 0.6s with the same center and limited by the boundaries of the
underlying extracted prosodic phrase.
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Figure 1 — Word boundary parameterization by pitch discontinuity features that consist in slope s,
RMS, and reset d, deviations between the FO registers left- and right-adjacent to the word boundary
(segi, segy) as well as their deviations from a common trend.

Next to these standard features it was quantified, to what extent the local register mea-
sured around the syllable nucleus sticks out of the corresponding register stretch of the prosodic
phrase. This Gestalt property was modeled as illustrated in Figure 2. As described in section
5.1 for the prosodic phrase, also within the analysis window around the pitch accent candidate,
a base-, a mid-, and a topline were fitted, as well as a range regression line for the base-topline
pair. Then the deviations of the locally fitted mid- (i.e. level) and range line from the corre-
sponding portions of prosodic phrase-level lines were measured in terms of RMS. The higher
the RMS, the more the local register around the pitch accent sticks out of the general regis-
ter trend within the prosodic phrase. This parameterization was used e.g. in [20] in order to
characterize accentual phrases.
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Figure 2 — Gestalt parameterization: deviation of the local register level and range around the pitch
accent candidate from the underlying prosodic phrase.

Finally, adopting the superpositional framework of [16], which is illustrated in Figure 3 the
local FO shape was parameterized in the analysis window by means of a third order polynomial
after normalizing it pointwise to the FO range of the corresponding portion in the prosodic
phrase. Range normalization to some extent abstracts from the influence of FO declination, so
that pitch accent candidates are comparable across different positions within a prosodic phrase.
The absolute polynomial coefficient values were added to the feature pool.

In addition to the FO and energy features, the normalized duration of the syllable nucleus
vowel was added to the pool as described in section 5.1.
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Figure 3 — Superpositional FO representation of global and local components. The local FO shape
around a syllable nucleus is parameterized by a third order polynomial. The polynomial is fitted to
range-normalized FO values, that is, FO is pointwise normalized relative to the values [0, 1] defined by
the corresponding local base- and topline point.

5.3 Clustering and feature weighting

Similar to [10, 21] the prosodic event detection is carried out by means of clustering. However,
instead of initializing the clustering by hand-annotated data as in [10], the cluster centers are
bootstrapped from the data based on few assumptions. For boundary detection these assump-
tions are: (1) each pause is preceded by a boundary, and (2) since prosodic phrases have a
minimum length, in the vicinity of pauses there are no further boundaries. Thus cluster cen-
troids were initialized by assigning class 1 (prosodic boundary) to the feature vectors at word
boundaries left-adjacent to a pause, and class 0 (no boundary) to all other word boundaries
within 1 second preceding and following a pause.

For accent assignment the two assumptions are: (1) all words longer than a threshold ¢,
are likely to be content words that contain a high amount of information and are thus taken as
class 1 (accented) representatives, and (2) all words shorter than a threshold z,,, are likely to
be function words with a low amount of lexical information and are thus taken as class 0 (no
accent) representatives. In the current study ¢, and t,,, were set to 0.6s and 0.15s, respectively.
For words fulfilling criterion (1) the most prominent syllable (approximated by the sum of its
feature values) was added to the class 1 cluster. For words fulfilling criterion (2) all syllables
were added to the class O cluster.

From this initial clustering feature weights were calculated from the mean cluster silhouette
derived separately for each feature. The weights thus reflect how well a feature separates the
seed clusters.

After this cluster initialization the remaining items (word boundaries for phrase boundaries,
and syllable nuclei for pitch accents) are assigned to the classes O or 1 in a single pass the
following way: for each feature vector i its weighted Euclidean distances d; o and d; ; to the class

0 and class 1 centroids are calculated, and the quotient of both distances ¢; = Zz—“: is recorded.
All items with a ¢; above a defined percentile p are assigned to class 1, and the items below
to class 0. By choosing a percentile threshold well above 50 the skewed distribution of class 0
and class 1 cases for both boundaries and accents can be tackled, i.e. more items receive class
0 than class 1. Other flat clustering approaches as kMeans assume equal variance of all classes
and thus perform worse on the given skewed distributions. The tuned percentile thresholds p
amount 87 and 82 for boundary placement and accentuation, respectively.

In a subsequent post-selection step for words with more than one accent assignment only

the accent closest to the class 1 centroid is kept, and all other accents are removed.



6 Validation

Chunking, syllable extraction, phrase boundary assignment, and accent assignment were vali-
dated against the reference data in terms of F1, precision, recall, and accuracy. The best results
for the tuning subset and the final results for the entire data set are shown in Table 1. Preci-
sion, recall, and F1-score are displayed for the class 1 cases only (i.e. presence of boundary,
accented; values would be higher, if averaged over both classes).

Chunking was evaluated indirectly via measuring the precision of pause detection. In the
lack of any manual reference the pauses were validated against the pause segments in the MAU
segment tier. Since MAuS alignment also accounts for short within-chunk pauses not to be
extracted for the given chunking task, only the precision will be reported. For this purpose,
each extracted pause overlapping with exactly one MAU pause was counted as a true positive —
exactly one, since two overlapping pauses indicate that a lexical item between these two pauses
had been erroneously ignored.

Syllable nucleus extraction, again, in the lack of a manual reference, was evaluated against
the MAuS segmentation. Precision, recall and F1 were calculated from the comparison of the
syllabifier time stamps with the MAU syllable nuclei midpoints. Due to noise in the automatic
segmentation a nucleus co-occurrence within a catch window of 0.1s was counted as a true
positive.

Prosodic boundary assignment was evaluated on the word level against the manual annota-
tions. Boundary decisions were to be made for each word boundary which was located based
on the MAuS segmentation. To cope with misalignments between the segmentation and the
manual prosodic event placements again a catch window of length 0.15s was defined.

Accent assignment was evaluated on the syllable level against the manual annotations using
a catch window of length 0.1s.

For boundary and accent evaluation Table 1 additionally contains the baseline accuracies
from assigning the most frequent class only, i.e. to label each word boundary with “no prosodic
boundary” and each syllable with “not accented”.

Table 1 — Results for chunking, syllable nucleus, boundary, and accent detection for the tuning data
subset and for the entire data set. For boundary localization Acc and BL (both in %) refer to word ac-
curacies. For accent localization they refer to syllable accuracies. The model underlying BL is given by
the uniform assignment of the most frequent class (i.e. “no boundary” and “not accented”, respectively).

tuning data all data
F1 | Prec | Rec | Acc | F1 | Prec | Rec | Acc | BL
Chunking - 1098 | - - - 1097 | - - -
Syllables | 0.88 | 0.94 | 0.83 | — | 087|093 | 0.82| - -
Boundaries | 0.61 | 0.64 | 0.58 | 84.3 | 0.59 | 0.67 | 0.53 | 85.0 | 79.2
Accents | 0.63 | 0.56 | 0.70 | 71.1 | 0.59 | 0.54 | 0.66 | 70.5 | 67.4

7 Discussion

Quite good performances were obtained for chunking and syllable nucleus extraction. Further-
more, the other components’ performances beat the corresponding baselines, which are already
quite high due to the skewed boundary and accent distributions. This skewness makes it nec-
essary to report not only accuracies but also Fl-scores, precision, and recall. The obtained
F1-scores are rather at the bottom end of the scores reported in [9, 10, 8] ranging from 0.58 up
to 0.86. This can to a large extent be explained by differences in the underlying data. In contrast



to the mentioned studies that examined read news speech, the current approach was applied to
spontaneous dialog speech which contains more variation due to irregular boundaries and hes-
itations. Further difficulties arise from the observation that several prosodic structure cues are
less salient in spontaneous speech than in read speech, e.g. pitch reset as shown in [22]. Thus a
comparative evaluation is not possible at the current stage.

In the exploratory phase four parameters were tuned for syllable nucleus extraction, and
one parameter (the clustering percentile threshold) each for boundary and accent detection. For
syllable detection the optimized values are sufficiently close to the values previously obtained
for another data set of hand-segmented read speech by Nelder-Mead optimization [16]. This
indicates good generalization capabilities across corpora. The percentile thresholds in contrast
are expected to be more dependent on speaking-style related densities of phrase boundaries and
accents and thus might need to be re-adjusted for other data sets.

A shortcoming of the current approach is its vulnerability to inherited errors due to the
dependencies of processing steps on the outcome of the preceding steps. To give an example,
accents can only be placed, where syllable nuclei have been detected, and several accent-related
features are measured relative to the prosodic phrases extracted before. It is thus to be tested
whether a disentanglement of the feature sets would increase performance. In addition, alter-
native cluster centroid bootstrapping assumptions e.g. referring to word predictability will be
examined.

For all feature extraction and for the prosodic annotation the CoPaSul toolkit [23] was used.
It is written in Python3 and is freely available here: [24].
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